MCP Echo Service
Provides echo tools for testing MCP protocol functionality with message echoing, delayed responses, and JSON data analysis capabilities.
README
MCP Echo Service
A Model Context Protocol (MCP) service that provides echo tools for testing MCP protocol functionality.
Features
- echo_message: Echo back a message with optional uppercase formatting
- echo_with_delay: Echo back a message after a simulated delay (max 5 seconds)
- echo_json: Echo back structured JSON data with analysis
Quick Start
Local Development
# Clone the repository
git clone https://github.com/NimbleBrainInc/mcp-echo.git
cd mcp-echo
# Install dependencies with uv
uv sync
# Run the server
uv run python server.py
# Or install in editable mode
uv pip install -e .
python server.py
The server will start on http://localhost:8000 with:
- Health check:
GET /health - MCP endpoint:
POST /mcp/(note the trailing slash)
Docker
# Build the image
docker build -t nimbletools/mcp-echo .
# Run the container
docker run -p 8000:8000 nimbletools/mcp-echo
MCP Protocol Support
This server implements the full MCP (Model Context Protocol) specification:
- Transport: Streamable HTTP with Server-Sent Events (SSE)
- Session Management: Proper initialization handshake required
- Protocol Version: 2024-11-05
- Framework: FastMCP 2.11.2
- Python Version: 3.13+
Session Management
The server requires proper MCP initialization:
- Initialize: Send
initializerequest to establish session - Initialized: Send
notifications/initializednotification - Tools: Use session ID for all subsequent requests
API Usage
Complete MCP Example
# Step 1: Initialize session
INIT_RESPONSE=$(curl -s -i -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-d '{
"jsonrpc": "2.0",
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": {"name": "example-client", "version": "1.0.0"}
},
"id": 1
}')
# Extract session ID
SESSION_ID=$(echo "$INIT_RESPONSE" | grep -i "mcp-session-id" | cut -d' ' -f2 | tr -d '\r')
# Step 2: Send initialized notification
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{"jsonrpc": "2.0", "method": "notifications/initialized"}'
# Step 3: List available tools
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{"jsonrpc": "2.0", "method": "tools/list", "id": 2}'
# Step 4: Call echo_message tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "echo_message",
"arguments": {"message": "Hello Echo!", "uppercase": true}
},
"id": 3
}'
# Step 5: Call echo_with_delay tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "echo_with_delay",
"arguments": {"message": "Delayed Echo", "delay_seconds": 1}
},
"id": 4
}'
# Step 6: Call echo_json tool
curl -X POST http://localhost:8000/mcp/ \
-H "Content-Type: application/json" \
-H "Accept: application/json, text/event-stream" \
-H "mcp-session-id: $SESSION_ID" \
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "echo_json",
"arguments": {"data": {"test": "value", "number": 42}}
},
"id": 5
}'
Simple Health Check
curl http://localhost:8000/health
Development
Testing
# Install with dev dependencies
uv sync --group dev
# Run tests (includes async MCP client tests)
uv run python -m pytest
# Run with coverage
uv run python -m pytest --cov=server
# Run specific test
uv run python -m pytest tests/test_server.py::test_echo_message_tool -v
Building and Deployment
# Build Docker image
docker build -t mcp-echo .
# Test the container
docker run -d --name mcp-test -p 8000:8000 mcp-echo
# Check health
curl http://localhost:8000/health
# Clean up
docker stop mcp-test && docker rm mcp-test
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
About
Part of the NimbleTools ecosystem. From the makers of NimbleBrain.
License
MIT License - see LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.