MCP Dummy DB Integration

MCP Dummy DB Integration

A secure Model Context Protocol implementation that enables AI agents to query PostgreSQL databases through predefined tools for employee, project, and issue data. It protects sensitive credentials and prevents arbitrary SQL execution by acting as a controlled connector layer between the LLM and the database.

Category
Visit Server

README

MCP Dummy DB Integration and Data Retrieval POC

Executive Summary

This project demonstrates a secure, production-ready implementation of the Model Context Protocol (MCP) as a connector layer between AI agents and PostgreSQL databases. The solution enables natural language queries without exposing database credentials to the LLM.

Key Achievement: LLM cannot access database directly - only through predefined MCP tools.


Architecture Overview

┌────────────────────────────────────────────────────────┐
│                    USER QUERY                         │
│          "Fetch employees in AI department"           │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         PLANNER AGENT (LLM)                           │
│  ✓ Natural Language Understanding                     │
│  ✗ NO database credentials                            │
│  Output: {"tool": "get_employees_by_department",      │
│           "parameters": {"department": "AI"}}         │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         EXECUTOR AGENT                                 │
│  ✓ Validates tool request                            │
│  ✓ Maps to allowed operations only                   │
│  ✗ Cannot execute arbitrary SQL                      │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         MCP TOOLS LAYER (Sandbox)                     │
│  ✓ get_employees_by_department("AI")                │
│  ✓ get_projects_by_status("Completed")              │
│  ✓ get_issues_by_priority("High")                   │
│  ✗ Cannot run arbitrary SQL                          │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         DATABASE CONNECTION (Secure)                  │
│  ✓ Credentials in environment variables             │
│  ✓ Only parameterized queries (SQL injection safe)  │
└───────────────────┬────────────────────────────────────┘
                    │
                    ▼
┌────────────────────────────────────────────────────────┐
│         RESULT TO USER                               │
│    [Secure data retrieval via MCP]                   │
└────────────────────────────────────────────────────────┘

Security Features

Feature With MCP
DB Credentials Secure in .env ✅
SQL Access Predefined tools only ✅
Attack Surface Limited operations only ✅
Audit Trail Full logging ✅
Connection Pool Yes ✅

Project Structure

MCP Task/
├── demo_agent_workflow.py  # Main Entry point (Agentic Workflow)
├── main.py                 # Interactive CLI entry point
├── .env                    # Database credentials (not in git)
├── README.md               # This file
├── database/
│   └── db_executor.py     # Database connection & queries
├── mcp/
│   └── tools.py           # MCP tool definitions
├── agents/
│   ├── orchestrator.py    # Manages the Agentic Workflow
│   ├── planner_agent.py   # Query planning agent (w/ Robust Fallback)
│   ├── executor_agent.py  # Query execution agent (Safe validation)
│   ├── reasoner_agent.py  # Result explanation agent
│   └── llm_provider.py    # LLM Interface
├── utils/
│   └── serializer.py      # Custom JSON serialization
└── datas_insert/
    └── sample_data.sql    # Sample database setup (PostgreSQL)

Setup Instructions

Prerequisites

  • Python 3.8+
  • PostgreSQL 12+
  • Ollama (running locally) or other LLM provider
  • pip packages: psycopg2, python-dotenv

Installation

  1. Clone the repository
  2. Create a virtual environment:
    python -m venv venv
    venv\Scripts\activate
    
  3. Install dependencies:
    pip install -r requirements.txt
    
  4. Configure .env:
    DB_HOST=localhost
    DB_PORT=5432
    DB_USER=postgres
    DB_PASSWORD=your_password
    DB_NAME=mcp_db
    
  5. Initialize database:
    psql -U postgres -d mcp_db -f datas_insert/sample_data.sql
    

Running the Demo

python demo_agent_workflow.py

Running the Interactive CLI

python main.py

Agentic Workflow Design

This project uses a multi-agent secure architecture:

  1. Orchestrator: The central brain that manages the lifecycle of a request.
  2. Planner Agent:
    • Role: Analyzes the user query and selects the appropriate MCP tool.
    • Robustness: Uses a Dual-Layer Strategy.
      • Layer 1: Tries to parse the LLM's JSON output.
      • Layer 2: If LLM output is malformed (common with small models), it falls back to a deterministic keyword extraction strategy to ensure the query is always answered correctly.
  3. Executor Agent:
    • Role: Validates the plan and executes the cached tool.
    • Safety: Ensures only allowed tools are called and handles parameter types safely.
  4. MCP Tool Layer: A sandboxed layer that prevents direct SQL access.
  5. Reasoner Agent: (Optional) Summarizes the raw data into a human-readable answer.

How MCP Works as a Connector Layer

  1. User Query → "Fetch employee details where department is AI"
  2. Planner Agent → LLM interprets query, creates plan without DB access
  3. MCP Tools → Translates plan to allowed operations (get_employees_by_department)
  4. Secure Execution → Only predefined MCP tools can access the database
  5. Result → Data returned to user

Security Benefit: The LLM never sees or uses database credentials directly.

MCP Tools Available

  • get_employees_by_department(department) - Fetch employees by department
  • get_projects_by_status(status) - Fetch projects by status
  • get_issues_by_priority(priority) - Fetch issues by priority

Example Queries

  • "Fetch employee details where department is AI"
  • "Show all projects with status completed"
  • "List all high priority issues"

Created by: Muniasamy K

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured