MCP Dummy DB Integration
A secure Model Context Protocol implementation that enables AI agents to query PostgreSQL databases through predefined tools for employee, project, and issue data. It protects sensitive credentials and prevents arbitrary SQL execution by acting as a controlled connector layer between the LLM and the database.
README
MCP Dummy DB Integration and Data Retrieval POC
Executive Summary
This project demonstrates a secure, production-ready implementation of the Model Context Protocol (MCP) as a connector layer between AI agents and PostgreSQL databases. The solution enables natural language queries without exposing database credentials to the LLM.
Key Achievement: LLM cannot access database directly - only through predefined MCP tools.
Architecture Overview
┌────────────────────────────────────────────────────────┐
│ USER QUERY │
│ "Fetch employees in AI department" │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ PLANNER AGENT (LLM) │
│ ✓ Natural Language Understanding │
│ ✗ NO database credentials │
│ Output: {"tool": "get_employees_by_department", │
│ "parameters": {"department": "AI"}} │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ EXECUTOR AGENT │
│ ✓ Validates tool request │
│ ✓ Maps to allowed operations only │
│ ✗ Cannot execute arbitrary SQL │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ MCP TOOLS LAYER (Sandbox) │
│ ✓ get_employees_by_department("AI") │
│ ✓ get_projects_by_status("Completed") │
│ ✓ get_issues_by_priority("High") │
│ ✗ Cannot run arbitrary SQL │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ DATABASE CONNECTION (Secure) │
│ ✓ Credentials in environment variables │
│ ✓ Only parameterized queries (SQL injection safe) │
└───────────────────┬────────────────────────────────────┘
│
▼
┌────────────────────────────────────────────────────────┐
│ RESULT TO USER │
│ [Secure data retrieval via MCP] │
└────────────────────────────────────────────────────────┘
Security Features
| Feature | With MCP |
|---|---|
| DB Credentials | Secure in .env ✅ |
| SQL Access | Predefined tools only ✅ |
| Attack Surface | Limited operations only ✅ |
| Audit Trail | Full logging ✅ |
| Connection Pool | Yes ✅ |
Project Structure
MCP Task/
├── demo_agent_workflow.py # Main Entry point (Agentic Workflow)
├── main.py # Interactive CLI entry point
├── .env # Database credentials (not in git)
├── README.md # This file
├── database/
│ └── db_executor.py # Database connection & queries
├── mcp/
│ └── tools.py # MCP tool definitions
├── agents/
│ ├── orchestrator.py # Manages the Agentic Workflow
│ ├── planner_agent.py # Query planning agent (w/ Robust Fallback)
│ ├── executor_agent.py # Query execution agent (Safe validation)
│ ├── reasoner_agent.py # Result explanation agent
│ └── llm_provider.py # LLM Interface
├── utils/
│ └── serializer.py # Custom JSON serialization
└── datas_insert/
└── sample_data.sql # Sample database setup (PostgreSQL)
Setup Instructions
Prerequisites
- Python 3.8+
- PostgreSQL 12+
- Ollama (running locally) or other LLM provider
- pip packages:
psycopg2,python-dotenv
Installation
- Clone the repository
- Create a virtual environment:
python -m venv venv venv\Scripts\activate - Install dependencies:
pip install -r requirements.txt - Configure
.env:DB_HOST=localhost DB_PORT=5432 DB_USER=postgres DB_PASSWORD=your_password DB_NAME=mcp_db - Initialize database:
psql -U postgres -d mcp_db -f datas_insert/sample_data.sql
Running the Demo
python demo_agent_workflow.py
Running the Interactive CLI
python main.py
Agentic Workflow Design
This project uses a multi-agent secure architecture:
- Orchestrator: The central brain that manages the lifecycle of a request.
- Planner Agent:
- Role: Analyzes the user query and selects the appropriate MCP tool.
- Robustness: Uses a Dual-Layer Strategy.
- Layer 1: Tries to parse the LLM's JSON output.
- Layer 2: If LLM output is malformed (common with small models), it falls back to a deterministic keyword extraction strategy to ensure the query is always answered correctly.
- Executor Agent:
- Role: Validates the plan and executes the cached tool.
- Safety: Ensures only allowed tools are called and handles parameter types safely.
- MCP Tool Layer: A sandboxed layer that prevents direct SQL access.
- Reasoner Agent: (Optional) Summarizes the raw data into a human-readable answer.
How MCP Works as a Connector Layer
- User Query → "Fetch employee details where department is AI"
- Planner Agent → LLM interprets query, creates plan without DB access
- MCP Tools → Translates plan to allowed operations (get_employees_by_department)
- Secure Execution → Only predefined MCP tools can access the database
- Result → Data returned to user
Security Benefit: The LLM never sees or uses database credentials directly.
MCP Tools Available
get_employees_by_department(department)- Fetch employees by departmentget_projects_by_status(status)- Fetch projects by statusget_issues_by_priority(priority)- Fetch issues by priority
Example Queries
- "Fetch employee details where department is AI"
- "Show all projects with status completed"
- "List all high priority issues"
Created by: Muniasamy K
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.