MCP Document Processor
An intelligent document processing system that automatically classifies, extracts information from, and routes business documents using the Model Context Protocol (MCP).
README
MCP Document Processor
An intelligent document processing system that uses the Model Context Protocol (MCP) to extract, analyze, and route business documents automatically.
Project Overview
This project demonstrates how to use MCP to solve a real business challenge: automating document processing workflows. The system can:
- Classify incoming documents (invoices, contracts, emails)
- Extract relevant information using ML models
- Process documents according to their type Maintain context throughout the processing pipeline Expose functionality through a REST API
Key MCP Components
- Context Objects: Central to MCP, these objects (implemented in
MCPContext) carry information between processing steps and maintain the document's state. - Memory System: Stores context objects between processing steps, with pluggable backends.
- Protocols: Defines clear interfaces for processors and models, ensuring modularity.
- Router: Intelligently routes documents to specialized processors based on content.
Business Value
This solution addresses several business challenges:
- Reduced Manual Processing: Automates extraction of data from documents
- Consistency: Ensures consistent processing across document types
- Auditability: Maintains processing history and confidence scores
- Scalability: Modular design allows adding new document types easily
Technical Highlights
- Uses BERT-based models for classification and entity extraction
- T5 model for document summarization
- FastAPI for REST interface
- Pluggable architecture for easy extension
- Comprehensive logging and error handling
- React based UI for better user experience
Overview
The MCP Document Processor is designed to solve the common business challenge of processing various types of documents (invoices, contracts, emails, etc.) in a consistent and automated way. It utilizes the Model Context Protocol framework to manage information flow between different components of the system.
Key Features
- Document Classification: Automatically identifies document types
- Information Extraction: Extracts key information from documents
- Document Routing: Routes documents to the appropriate processors
- Context Management: Maintains context throughout the processing pipeline
- API Interface: Provides a RESTful API for integration with other systems
Architecture
The system is built around the Model Context Protocol (MCP), which provides:
-
Context Objects: Carry information across processing steps
# Example of MCPContext usage context = MCPContext( document_id=document_id, raw_text=text, metadata=metadata ) # Adding extracted data with confidence scores context.add_extracted_data("invoice_number", "INV-12345", confidence=0.95) # Tracking processing history context.add_to_history( processor_name="InvoiceProcessor", status="completed", details={"processing_time": "0.5s"} ) -
Memory System: Stores context objects between API calls
# Storing context in memory memory.store(document_id, context) # Retrieving context from memory context = memory.retrieve(document_id) -
Protocols: Define interfaces for processors and models
# Processor protocol example class Processor(Protocol): @abstractmethod def process(self, context: MCPContext) -> MCPContext: """Process the document and update the context.""" pass @abstractmethod def can_handle(self, context: MCPContext) -> bool: """Determine if this processor can handle the given document.""" pass -
Router: Routes documents to appropriate specialized processors
# Router usage example processor = processor_router.route(context) if processor: processed_context = processor.process(context)
MCP Flow Diagram
Document Upload → MCPContext Creation → Memory Storage →
Document Processing → Router Selection → Specialized Processor →
Entity Extraction → Context Update → Memory Storage → API Response
MCP Implementation Details
The Model Context Protocol implementation in this project offers several key advantages:
1. Stateful Processing with Context Persistence
The MCPContext class maintains state throughout the document processing lifecycle:
# Context is created during document upload
@router.post("/documents/upload")
async def upload_document(file: UploadFile, memory: MemoryInterface):
# Create a context
context = MCPContext(
document_id=document_id,
raw_text=text,
metadata=metadata
)
# Store in memory for later retrieval
memory.store(document_id, context)
2. Pluggable Memory System
The memory system is designed to be pluggable, allowing different storage backends:
# Factory function in memory.py
def get_memory_store(memory_type: str = "in_memory", **kwargs) -> MemoryInterface:
if memory_type == "in_memory":
return InMemoryStorage(default_ttl=kwargs.get("ttl", 3600))
# Additional implementations can be added here
3. Confidence Tracking
MCP tracks confidence scores for all extracted data, enabling better decision-making:
# In entity_extractor.py
entity_data = {
"text": text[current_entity["start"]:current_entity["end"]],
"start": current_entity["start"],
"end": current_entity["end"],
"confidence": avg_confidence
}
4. Processing History
Each processing step is recorded in the context's history, providing auditability:
# In router.py
context.add_to_history(
processor_name=processor.__class__.__name__,
status="completed"
)
5. Intelligent Document Routing
The ProcessorRouter determines the appropriate processor for each document:
# In router.py
def route(self, context: MCPContext) -> Optional[Processor]:
for processor in self.processors:
if processor.can_handle(context):
return processor
return None
6. Extensibility
Adding new document types is straightforward by implementing the Processor protocol:
# Example of adding a new processor
class NewDocumentProcessor(BaseProcessor):
def can_handle(self, context: MCPContext) -> bool:
# Logic to determine if this processor can handle the document
pass
def process(self, context: MCPContext) -> MCPContext:
# Document processing logic
pass
Document Processors
The system includes specialized processors for different document types:
- Invoice Processor: Extracts vendor, customer, line items, totals, etc.
- Contract Processor: Extracts parties, key dates, terms, etc.
- Email Processor: Extracts sender, recipients, subject, body, etc.
Machine Learning Models
Several ML models are used for different tasks:
- Document Classifier: BERT-based model for document type classification
- Entity Extractor: Named Entity Recognition model for extracting key information
- Summarizer: T5-based model for generating document summaries
User Interface
The MCP Document Processor includes a modern React-based user interface that provides an intuitive way to interact with the document processing system. The UI is built with Material-UI and offers the following features:
UI Features
- Dashboard: Overview of processed documents with statistics and quick access to document details
- Document Upload: Drag-and-drop interface for uploading new documents
- Document Processing: Step-by-step workflow for processing documents
- Document Viewer: Detailed view of processed documents with extracted information
- Processing History: Timeline view of all processing steps for auditability
UI Architecture
The frontend is built with:
- React: For building the user interface components
- Material-UI: For consistent, responsive design
- React Router: For navigation between different views
- Axios: For API communication with the backend
- Chart.js: For data visualization of document statistics
UI-Backend Integration
The frontend communicates with the backend through a RESTful API, with the following main endpoints:
GET /api/documents: Retrieve all documentsPOST /api/documents/upload: Upload a new documentPOST /api/documents/{document_id}/process: Process a documentGET /api/documents/{document_id}: Get document detailsDELETE /api/documents/{document_id}: Delete a document
Complete System Architecture
The MCP Document Processor follows a layered architecture that integrates the frontend, API layer, processing components, and machine learning models:
┌─────────────────────────────────────────────────────────────────────────┐
│ Frontend Layer │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────┐ │
│ │ Dashboard │ │ Upload │ │ Document Viewer │ │
│ └─────────────┘ └─────────────┘ └─────────────────────────┘ │
│ │ │ │ │
└──────────┼───────────────────┼─────────────────────────┼────────────────┘
│ │ │
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────────────────┐
│ API Layer │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────┐ │
│ │ Document │ │ Document │ │ Document │ │
│ │ Upload API │ │ Process API │ │ Retrieval API │ │
│ └─────────────┘ └─────────────┘ └─────────────────────────┘ │
│ │ │ │ │
└──────────┼───────────────────┼─────────────────────────┼────────────────┘
│ │ │
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────────────────┐
│ MCP Core Components │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────┐ │
│ │ MCPContext │◄────►│ Memory │◄────►│ Processor Router │ │
│ └─────────────┘ └─────────────┘ └─────────────────────────┘ │
│ │ │ │
└──────────┼────────────────────────────────────────────┼─────────────────┘
│ │
│ │
▼ ▼
┌─────────────────────────────────────────────────────────────────────────┐
│ Document Processors │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────┐ │
│ │ Invoice │ │ Contract │ │ Email │ │
│ │ Processor │ │ Processor │ │ Processor │ │
│ └─────────────┘ └─────────────┘ └─────────────────────────┘ │
│ │ │ │ │
└──────────┼───────────────────┼─────────────────────────┼────────────────┘
│ │ │
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────────────────┐
│ ML Models Layer │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────┐ │
│ │ Document │ │ Entity │ │ Summarizer │ │
│ │ Classifier │ │ Extractor │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────┘
Complete Workflow
The document processing workflow involves multiple steps across the system components:
-
Document Upload:
- User uploads a document through the UI
- Frontend sends the document to the backend API
- Backend creates an MCPContext object with document metadata
- Context is stored in the Memory system
-
Document Classification:
- User initiates processing through the UI
- Backend retrieves the document context from Memory
- Document Classifier model determines document type
- Context is updated with document type information
-
Document Processing:
- Processor Router selects the appropriate processor based on document type
- Selected processor (Invoice, Contract, or Email) processes the document
- Processor uses Entity Extractor to identify key information
- Extracted data is added to the context with confidence scores
-
Result Retrieval:
- Updated context is stored back in Memory
- UI retrieves and displays the processed document information
- User can view extracted data, confidence scores, and processing history
-
Audit and Review:
- All processing steps are recorded in the context's processing history
- UI provides visualization of confidence scores for extracted data
- User can review the document text alongside extracted information
Getting Started
Prerequisites
- Python 3.8+
- Node.js 14+ and npm (for the frontend)
- Dependencies listed in requirements.txt
Installation and Setup
Backend Setup
-
Clone the repository
git clone https://github.com/yourusername/mcp_document_processor.git cd mcp_document_processor -
Create and activate a virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate -
Install backend dependencies
pip install -r requirements.txt -
Create a data directory for document storage (if it doesn't exist)
mkdir -p data
Frontend Setup
-
Navigate to the frontend directory
cd frontend -
Install frontend dependencies
npm install
Running the Application
Start the Backend Server
-
From the root directory of the project (with virtual environment activated):
python app.pyThis will start the FastAPI server on http://localhost:8000.
-
You can access the API documentation at http://localhost:8000/docs
Start the Frontend Development Server
-
Open a new terminal window/tab
-
Navigate to the frontend directory:
cd /path/to/mcp_document_processor/frontend -
Start the React development server:
npm startThis will start the frontend on http://localhost:3000.
Using the Application
- Open your browser and navigate to http://localhost:3000
- Use the sidebar navigation to:
- View the dashboard
- Upload new documents
- Process and view document details
Example Workflow
-
Upload a Document:
- Click on "Upload Document" in the sidebar
- Drag and drop a document (PDF, image, or text file)
- Click "Upload Document" button
-
Process the Document:
- After successful upload, click "Process Document"
- Wait for processing to complete
-
View Results:
- View extracted data, confidence scores, and processing history
- Navigate to the Dashboard to see all processed documents
API Usage
You can also interact directly with the API:
GET /api/documents: Retrieve all documentsPOST /api/documents/upload: Upload a new documentPOST /api/documents/{document_id}/process: Process a documentGET /api/documents/{document_id}: Get document detailsDELETE /api/documents/{document_id}: Delete a document
Extending the System
Adding a New Document Processor
- Create a new processor class that inherits from
BaseProcessor - Implement the
can_handleandprocessmethods - Add the processor to the router in
api/routes.py
Adding a New Model
- Create a new model class that implements the appropriate protocol
- Add configuration in
config/config.yaml - Integrate the model with the relevant processor
License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.