MCP Document Converter
Converts DOCX files to Markdown with formatting preservation and image extraction, and provides image analysis tools for document processing workflows.
README
MCP Document Converter
A lightweight Model Context Protocol (MCP) server that provides DOCX to Markdown conversion and image analysis tools for VS Code Copilot. Focused on document processing without heavy browser automation dependencies.
Installation
npm install -g mcp-document-converter
Features
Document Conversion Tools
- convert_docx_to_markdown - Convert DOCX files to Markdown with formatting preservation
- Extract and save embedded images from documents
- Preserve formatting (bold, italic, headers, lists, etc.)
- Generate clean Markdown output with metadata
Core Capabilities
- Complete formatting preservation (headers, tables, lists, colors)
- Image extraction with proper file naming
- HTML entity escaping for proper markdown display
- JSON-RPC over stdio (standard MCP protocol)
- Compatible with VS Code Copilot and other MCP clients
- Lightweight with minimal dependencies
Image Analysis Tools
- read_image_info - Read image metadata and dimensions
- analyze_images_directory - Analyze all images in a folder
- create_image_viewer - Generate HTML viewer for images
Requirements
- Node.js 14+
- Dependencies:
mammoth,turndown,turndown-plugin-gfm
Usage
As a Global Command
After installing globally:
mcp-document-converter
Programmatically
node src/server.js
With npx
npx mcp-browser-opener
The server will listen for JSON-RPC messages on stdin and respond on stdout.
MCP Protocol
The server implements the standard MCP protocol using JSON-RPC over stdio:
Initialize
{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {},
"clientInfo": { "name": "test", "version": "1.0.0" }
}
}
List Tools
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/list"
}
Call Tool
{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "open_browser",
"arguments": {
"query": "How to use VS Code Copilot"
}
}
}
Call browser_input_text Tool
{
"jsonrpc": "2.0",
"id": 4,
"method": "tools/call",
"params": {
"name": "browser_input_text",
"arguments": {
"url": "https://www.google.com",
"selector": "textarea[name=\"q\"]",
"text": "automated search query",
"submit": true,
"headless": false,
"screenshot": true
}
}
}
Tool: open_browser
Opens a Chrome browser window with optional URL or search query.
Parameters:
url(optional): Specific URL to openquery(optional): Search query for Google search
Example:
{
"name": "open_browser",
"arguments": {
"query": "JavaScript tutorial"
}
}
Tool: browser_input_text
Controls a headless browser to input text into web forms and elements using Puppeteer.
Parameters:
url(required): URL to navigate toselector(required): CSS selector for the input element (e.g.,'input[name="search"]','#searchbox')text(required): Text to input into the elementsubmit(optional): Whether to submit the form after inputting text (default: false)headless(optional): Whether to run browser in headless mode (default: true)screenshot(optional): Whether to take a screenshot after the action (default: false)
Example:
{
"name": "browser_input_text",
"arguments": {
"url": "https://example.com/form",
"selector": "#email",
"text": "test@example.com",
"submit": false,
"headless": true,
"screenshot": true
}
}
Tool: convert_docx_to_markdown
Converts DOCX documents to Markdown format while preserving formatting and extracting embedded images.
Parameters:
inputFile(required): Path to the input DOCX fileoutputFile(optional): Path for the output Markdown file (returns content if not specified)extractImages(optional): Whether to extract and save images (default: true)imageDir(optional): Directory name for extracted images (default: 'images')preserveFormatting(optional): Whether to preserve formatting (default: true)
Example:
{
"jsonrpc": "2.0",
"id": 5,
"method": "tools/call",
"params": {
"name": "convert_docx_to_markdown",
"arguments": {
"inputFile": "document.docx",
"outputFile": "document.md",
"extractImages": true,
"imageDir": "images",
"preserveFormatting": true
}
}
}
Features:
- Preserves text formatting (bold, italic, strikethrough)
- Converts headers, lists, and blockquotes
- Extracts embedded images to separate files
- Generates relative image links in Markdown
- Adds conversion metadata header
- Handles complex document structures
Integration with VS Code Copilot
This server can be configured as an MCP server in VS Code to provide browser automation and document conversion capabilities. Add it to your MCP configuration:
{
"mcpServers": {
"browser-opener": {
"command": "mcp-browser-opener"
}
}
}
Development
- Clone the repository
- Install dependencies:
npm install - Run the server:
npm startornode src/server.js
Project Structure
src/- Source code and toolset modulestest/- All test files, sample data, and generated outputstest/docx_convertion/- Sample DOCX files for testing document conversion
Testing
Basic Tests
Run all basic tool tests:
npm test
DOCX Conversion Tests
Test document conversion functionality:
npm run test:docx
Manual Testing
Test the server by sending JSON-RPC messages:
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' | mcp-browser-opener
License
MIT
Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.