MCP Demo Server
A demonstration MCP server showcasing tools (calculator, file operations, weather, timestamp), resources (server config, system info, documentation), and reusable prompt templates for code review, documentation, and debugging.
README
MCP Demo Server
A production-ready demonstration of a Model Context Protocol (MCP) server implemented in Python. This project showcases best practices for building MCP servers with comprehensive examples of tools, resources, and prompts.
What is MCP?
The Model Context Protocol (MCP) is an open protocol that standardizes how applications provide context to Large Language Models (LLMs). MCP servers expose:
- Tools: Executable functions that LLMs can call (e.g., calculator, file operations)
- Resources: Data sources that LLMs can read (e.g., configuration, documentation)
- Prompts: Reusable prompt templates for common tasks
Features
Tools Implemented
-
Calculator - Basic mathematical operations
- Operations: add, subtract, multiply, divide
- Full input validation and error handling
-
File Operations - File system interactions
- Read, write, list directories, check file existence
- Safe path handling with proper error messages
-
Weather - Simulated weather information
- Get weather data for any city
- Support for Celsius and Fahrenheit
-
Timestamp - Get current time in various formats
- ISO format, Unix timestamp, human-readable format
Resources Available
-
Server Configuration (
config://server/settings)- Current server settings and metadata
- JSON formatted configuration
-
System Information (
system://info)- OS, Python version, working directory
- Server process information
-
Documentation (
docs://getting-started)- Getting started guide
- Usage instructions
Prompts Provided
-
Code Review - Generate code review checklists
- Customizable by programming language
- Adjustable complexity level
-
Documentation - Documentation templates
- API, User, and Developer documentation types
- Project-specific customization
-
Debug Assistant - Debugging guidance
- Structured debugging approach
- Common techniques and best practices
Installation
Prerequisites
- Python 3.10 or higher
- pip (Python package manager)
Install Dependencies
# Clone the repository
git clone https://github.com/yourusername/mcp-agent.git
cd mcp-agent
# Install the package
pip install -e .
# Or install dependencies directly
pip install -r requirements.txt
Development Setup
# Install development dependencies
pip install -r requirements-dev.txt
# Run tests
pytest
# Format code
black src/
# Lint code
ruff check src/
Usage
Running the Server
The server uses stdio for communication, which is the standard transport for MCP servers:
# Run directly with Python
python -m mcp_demo.server
# Or use the installed script
mcp-demo
Configuration for Claude Desktop
To use this MCP server with Claude Desktop, add it to your Claude configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"demo": {
"command": "python",
"args": [
"-m",
"mcp_demo.server"
],
"env": {}
}
}
}
Or using the installed command:
{
"mcpServers": {
"demo": {
"command": "mcp-demo",
"args": [],
"env": {}
}
}
}
Using with MCP Client
You can also use the included example client:
python examples/client.py
Project Structure
mcp-agent/
├── src/
│ └── mcp_demo/
│ ├── __init__.py # Package initialization
│ └── server.py # Main server implementation
├── examples/
│ ├── client.py # Example MCP client
│ └── claude_config.json # Example Claude Desktop config
├── tests/
│ ├── __init__.py
│ └── test_server.py # Server tests
├── pyproject.toml # Project configuration
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
├── README.md # This file
└── LICENSE # MIT License
Code Architecture
Server Implementation
The server follows a clean, modular architecture:
class MCPDemoServer:
"""Main server class with handler methods"""
def __init__(self, name: str):
"""Initialize server and register handlers"""
async def list_tools(self) -> list[Tool]:
"""Return available tools"""
async def call_tool(self, name: str, arguments: Any) -> list[TextContent]:
"""Execute a tool"""
async def list_resources(self) -> list[Resource]:
"""Return available resources"""
async def read_resource(self, uri: AnyUrl) -> str:
"""Read a resource"""
async def list_prompts(self) -> list[Prompt]:
"""Return available prompts"""
async def get_prompt(self, name: str, arguments: dict) -> GetPromptResult:
"""Get a prompt with arguments"""
Key Design Patterns
- Type Safety: Full type hints with Pydantic models
- Error Handling: Comprehensive try-catch with logging
- Validation: Input validation using Pydantic schemas
- Logging: Structured logging to file and stderr
- Async/Await: Proper async patterns throughout
- Separation of Concerns: Each tool in its own method
Examples
Example 1: Using the Calculator Tool
# Tool call from LLM client
{
"name": "calculator",
"arguments": {
"operation": "add",
"a": 15,
"b": 27
}
}
# Response
{
"content": [
{
"type": "text",
"text": "Result: 15 add 27 = 42"
}
]
}
Example 2: Reading a Resource
# Read server configuration
{
"uri": "config://server/settings"
}
# Response (JSON)
{
"server_name": "mcp-demo-server",
"version": "1.0.0",
"max_connections": 100,
"features": ["tools", "resources", "prompts"]
}
Example 3: Getting a Prompt
# Get code review prompt
{
"name": "code-review",
"arguments": {
"language": "Python",
"complexity": "complex"
}
}
# Response: Detailed code review checklist for Python
Development
Adding a New Tool
- Define input schema with Pydantic:
class MyToolInput(BaseModel):
param1: str = Field(description="Description")
param2: int = Field(default=0, description="Description")
- Add tool to
list_tools():
Tool(
name="my_tool",
description="What this tool does",
inputSchema=MyToolInput.model_json_schema(),
)
- Implement tool logic:
async def _my_tool(self, arguments: dict) -> list[TextContent]:
tool_input = MyToolInput(**arguments)
# Your implementation here
return [TextContent(type="text", text="Result")]
- Add to
call_tool()dispatcher:
if name == "my_tool":
return await self._my_tool(arguments)
Adding a New Resource
- Add to
list_resources():
Resource(
uri=AnyUrl("my://resource"),
name="My Resource",
description="What this resource provides",
mimeType="application/json",
)
- Add handler in
read_resource():
if uri_str == "my://resource":
data = {"key": "value"}
return json.dumps(data, indent=2)
Adding a New Prompt
- Add to
list_prompts():
Prompt(
name="my-prompt",
description="What this prompt does",
arguments=[
{
"name": "arg1",
"description": "Argument description",
"required": True,
}
],
)
- Add handler in
get_prompt():
if name == "my-prompt":
arg1 = arguments.get("arg1")
message = f"Prompt template with {arg1}"
return GetPromptResult(
messages=[
PromptMessage(
role="user",
content=TextContent(type="text", text=message),
)
]
)
Testing
Run the test suite:
# Run all tests
pytest
# Run with coverage
pytest --cov=mcp_demo --cov-report=html
# Run specific test file
pytest tests/test_server.py
# Run with verbose output
pytest -v
Best Practices Demonstrated
- Input Validation: All tool inputs validated with Pydantic
- Error Handling: Comprehensive error handling with meaningful messages
- Logging: Structured logging for debugging and monitoring
- Type Safety: Full type hints throughout the codebase
- Documentation: Comprehensive docstrings and comments
- Testing: Unit tests for all major functionality
- Code Quality: Formatted with Black, linted with Ruff
- Async Patterns: Proper use of async/await
- Resource Management: Proper cleanup and resource handling
- Security: Safe file operations with path validation
Troubleshooting
Common Issues
Issue: Module not found error
# Solution: Install in development mode
pip install -e .
Issue: Server not appearing in Claude Desktop
# Solution: Check configuration file path and JSON syntax
# Restart Claude Desktop after configuration changes
Issue: Import errors for mcp package
# Solution: Install latest MCP SDK
pip install --upgrade mcp
Debug Mode
Enable debug logging:
import logging
logging.basicConfig(level=logging.DEBUG)
Check the log file:
tail -f mcp_server.log
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Resources
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Built with the MCP Python SDK
- Inspired by the MCP community examples
- Thanks to Anthropic for developing the Model Context Protocol
Support
- Create an issue: GitHub Issues
- Documentation: README
- MCP Community: MCP Discord
Happy MCP Server Building! 🚀
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.