MCP Demo Server

MCP Demo Server

A demonstration MCP server showcasing tools (calculator, file operations, weather, timestamp), resources (server config, system info, documentation), and reusable prompt templates for code review, documentation, and debugging.

Category
Visit Server

README

MCP Demo Server

A production-ready demonstration of a Model Context Protocol (MCP) server implemented in Python. This project showcases best practices for building MCP servers with comprehensive examples of tools, resources, and prompts.

What is MCP?

The Model Context Protocol (MCP) is an open protocol that standardizes how applications provide context to Large Language Models (LLMs). MCP servers expose:

  • Tools: Executable functions that LLMs can call (e.g., calculator, file operations)
  • Resources: Data sources that LLMs can read (e.g., configuration, documentation)
  • Prompts: Reusable prompt templates for common tasks

Features

Tools Implemented

  1. Calculator - Basic mathematical operations

    • Operations: add, subtract, multiply, divide
    • Full input validation and error handling
  2. File Operations - File system interactions

    • Read, write, list directories, check file existence
    • Safe path handling with proper error messages
  3. Weather - Simulated weather information

    • Get weather data for any city
    • Support for Celsius and Fahrenheit
  4. Timestamp - Get current time in various formats

    • ISO format, Unix timestamp, human-readable format

Resources Available

  1. Server Configuration (config://server/settings)

    • Current server settings and metadata
    • JSON formatted configuration
  2. System Information (system://info)

    • OS, Python version, working directory
    • Server process information
  3. Documentation (docs://getting-started)

    • Getting started guide
    • Usage instructions

Prompts Provided

  1. Code Review - Generate code review checklists

    • Customizable by programming language
    • Adjustable complexity level
  2. Documentation - Documentation templates

    • API, User, and Developer documentation types
    • Project-specific customization
  3. Debug Assistant - Debugging guidance

    • Structured debugging approach
    • Common techniques and best practices

Installation

Prerequisites

  • Python 3.10 or higher
  • pip (Python package manager)

Install Dependencies

# Clone the repository
git clone https://github.com/yourusername/mcp-agent.git
cd mcp-agent

# Install the package
pip install -e .

# Or install dependencies directly
pip install -r requirements.txt

Development Setup

# Install development dependencies
pip install -r requirements-dev.txt

# Run tests
pytest

# Format code
black src/

# Lint code
ruff check src/

Usage

Running the Server

The server uses stdio for communication, which is the standard transport for MCP servers:

# Run directly with Python
python -m mcp_demo.server

# Or use the installed script
mcp-demo

Configuration for Claude Desktop

To use this MCP server with Claude Desktop, add it to your Claude configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "demo": {
      "command": "python",
      "args": [
        "-m",
        "mcp_demo.server"
      ],
      "env": {}
    }
  }
}

Or using the installed command:

{
  "mcpServers": {
    "demo": {
      "command": "mcp-demo",
      "args": [],
      "env": {}
    }
  }
}

Using with MCP Client

You can also use the included example client:

python examples/client.py

Project Structure

mcp-agent/
├── src/
│   └── mcp_demo/
│       ├── __init__.py          # Package initialization
│       └── server.py            # Main server implementation
├── examples/
│   ├── client.py                # Example MCP client
│   └── claude_config.json       # Example Claude Desktop config
├── tests/
│   ├── __init__.py
│   └── test_server.py           # Server tests
├── pyproject.toml               # Project configuration
├── requirements.txt             # Production dependencies
├── requirements-dev.txt         # Development dependencies
├── README.md                    # This file
└── LICENSE                      # MIT License

Code Architecture

Server Implementation

The server follows a clean, modular architecture:

class MCPDemoServer:
    """Main server class with handler methods"""

    def __init__(self, name: str):
        """Initialize server and register handlers"""

    async def list_tools(self) -> list[Tool]:
        """Return available tools"""

    async def call_tool(self, name: str, arguments: Any) -> list[TextContent]:
        """Execute a tool"""

    async def list_resources(self) -> list[Resource]:
        """Return available resources"""

    async def read_resource(self, uri: AnyUrl) -> str:
        """Read a resource"""

    async def list_prompts(self) -> list[Prompt]:
        """Return available prompts"""

    async def get_prompt(self, name: str, arguments: dict) -> GetPromptResult:
        """Get a prompt with arguments"""

Key Design Patterns

  1. Type Safety: Full type hints with Pydantic models
  2. Error Handling: Comprehensive try-catch with logging
  3. Validation: Input validation using Pydantic schemas
  4. Logging: Structured logging to file and stderr
  5. Async/Await: Proper async patterns throughout
  6. Separation of Concerns: Each tool in its own method

Examples

Example 1: Using the Calculator Tool

# Tool call from LLM client
{
  "name": "calculator",
  "arguments": {
    "operation": "add",
    "a": 15,
    "b": 27
  }
}

# Response
{
  "content": [
    {
      "type": "text",
      "text": "Result: 15 add 27 = 42"
    }
  ]
}

Example 2: Reading a Resource

# Read server configuration
{
  "uri": "config://server/settings"
}

# Response (JSON)
{
  "server_name": "mcp-demo-server",
  "version": "1.0.0",
  "max_connections": 100,
  "features": ["tools", "resources", "prompts"]
}

Example 3: Getting a Prompt

# Get code review prompt
{
  "name": "code-review",
  "arguments": {
    "language": "Python",
    "complexity": "complex"
  }
}

# Response: Detailed code review checklist for Python

Development

Adding a New Tool

  1. Define input schema with Pydantic:
class MyToolInput(BaseModel):
    param1: str = Field(description="Description")
    param2: int = Field(default=0, description="Description")
  1. Add tool to list_tools():
Tool(
    name="my_tool",
    description="What this tool does",
    inputSchema=MyToolInput.model_json_schema(),
)
  1. Implement tool logic:
async def _my_tool(self, arguments: dict) -> list[TextContent]:
    tool_input = MyToolInput(**arguments)
    # Your implementation here
    return [TextContent(type="text", text="Result")]
  1. Add to call_tool() dispatcher:
if name == "my_tool":
    return await self._my_tool(arguments)

Adding a New Resource

  1. Add to list_resources():
Resource(
    uri=AnyUrl("my://resource"),
    name="My Resource",
    description="What this resource provides",
    mimeType="application/json",
)
  1. Add handler in read_resource():
if uri_str == "my://resource":
    data = {"key": "value"}
    return json.dumps(data, indent=2)

Adding a New Prompt

  1. Add to list_prompts():
Prompt(
    name="my-prompt",
    description="What this prompt does",
    arguments=[
        {
            "name": "arg1",
            "description": "Argument description",
            "required": True,
        }
    ],
)
  1. Add handler in get_prompt():
if name == "my-prompt":
    arg1 = arguments.get("arg1")
    message = f"Prompt template with {arg1}"
    return GetPromptResult(
        messages=[
            PromptMessage(
                role="user",
                content=TextContent(type="text", text=message),
            )
        ]
    )

Testing

Run the test suite:

# Run all tests
pytest

# Run with coverage
pytest --cov=mcp_demo --cov-report=html

# Run specific test file
pytest tests/test_server.py

# Run with verbose output
pytest -v

Best Practices Demonstrated

  1. Input Validation: All tool inputs validated with Pydantic
  2. Error Handling: Comprehensive error handling with meaningful messages
  3. Logging: Structured logging for debugging and monitoring
  4. Type Safety: Full type hints throughout the codebase
  5. Documentation: Comprehensive docstrings and comments
  6. Testing: Unit tests for all major functionality
  7. Code Quality: Formatted with Black, linted with Ruff
  8. Async Patterns: Proper use of async/await
  9. Resource Management: Proper cleanup and resource handling
  10. Security: Safe file operations with path validation

Troubleshooting

Common Issues

Issue: Module not found error

# Solution: Install in development mode
pip install -e .

Issue: Server not appearing in Claude Desktop

# Solution: Check configuration file path and JSON syntax
# Restart Claude Desktop after configuration changes

Issue: Import errors for mcp package

# Solution: Install latest MCP SDK
pip install --upgrade mcp

Debug Mode

Enable debug logging:

import logging
logging.basicConfig(level=logging.DEBUG)

Check the log file:

tail -f mcp_server.log

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Resources

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Built with the MCP Python SDK
  • Inspired by the MCP community examples
  • Thanks to Anthropic for developing the Model Context Protocol

Support


Happy MCP Server Building! 🚀

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured