MCP Database Server

MCP Database Server

Enables AI assistants to interact with PostgreSQL databases through query execution and schema inspection, supporting multiple schemas for customer data, document management, loan systems, and asset leasing.

Category
Visit Server

README

MCP Database Server

A Model Context Protocol (MCP) server that provides PostgreSQL database access with query execution and schema inspection capabilities.

Overview

This MCP server enables AI assistants (like Claude) to interact with a PostgreSQL database containing data from multiple systems:

  • cs (CustomerScoreView): Customer and credit assessment data
  • dms (Data Management System): Document management data
  • los (Loan Management System): Loan and payment data
  • mls (Mahatheun Leasing System): Contract and asset leasing data

Features

  • Query Execution: Execute SQL SELECT, INSERT, UPDATE, DELETE queries
  • Schema Inspection: List schemas, tables, and column details
  • Multi-Schema Support: Organize data by system (cs, dms, los, mls)
  • Docker Setup: PostgreSQL in Docker with automatic initialization
  • CSV Import: Sample data included and ready to import

Prerequisites

  • Python 3.10 or higher
  • Docker and Docker Compose
  • pip (Python package installer)

Installation

  1. Clone or navigate to the project directory:

    cd c:\Users\chaya\project\mcp-database
    
  2. Install Python dependencies:

    pip install -r requirements.txt
    
  3. Configure environment variables:

    copy .env.example .env
    

    Edit .env if you need to change database credentials (optional).

Setup

1. Start PostgreSQL Database

Start the PostgreSQL container with Docker Compose:

docker-compose up -d

Verify the database is running:

docker-compose ps

2. Verify Database Initialization

The database will automatically initialize with schemas and sample data. Check the schemas:

docker-compose exec postgres psql -U postgres -d mcp_database -c "\dn"

List tables in a schema:

docker-compose exec postgres psql -U postgres -d mcp_database -c "\dt cs.*"

3. (Optional) Import CSV Data

Sample CSV files are provided in raw_data/. To import them into the database:

docker-compose exec postgres bash -c "cd /raw_data && find . -name '*.csv' -type f"

Import a specific CSV file:

docker-compose exec postgres psql -U postgres -d mcp_database -c "\COPY cs.customers FROM '/raw_data/cs/customers.csv' WITH CSV HEADER;"
docker-compose exec postgres psql -U postgres -d mcp_database -c "\COPY dms.documents FROM '/raw_data/dms/documents.csv' WITH CSV HEADER;"
docker-compose exec postgres psql -U postgres -d mcp_database -c "\COPY los.loans FROM '/raw_data/los/loans.csv' WITH CSV HEADER;"
docker-compose exec postgres psql -U postgres -d mcp_database -c "\COPY mls.contracts FROM '/raw_data/mls/contracts.csv' WITH CSV HEADER;"

Running the MCP Server

Test Locally

Run the server directly to test:

python src/server.py

The server will start and listen for MCP messages via stdio.

Configure with Claude Desktop

To use this MCP server with Claude Desktop, add it to your Claude configuration file:

Windows: %APPDATA%\Claude\claude_desktop_config.json

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Add this configuration:

{
  "mcpServers": {
    "mcp-database": {
      "command": "python",
      "args": ["c:\\Users\\chaya\\project\\mcp-database\\src\\server.py"],
      "env": {
        "DB_HOST": "localhost",
        "DB_PORT": "5432",
        "DB_NAME": "mcp_database",
        "DB_USER": "postgres",
        "DB_PASSWORD": "postgres"
      }
    }
  }
}

Restart Claude Desktop to load the server.

Available MCP Tools

1. list_schemas

Lists all available database schemas.

Example:

Can you list all database schemas?

2. list_tables

Lists all tables, optionally filtered by schema.

Parameters:

  • schema (optional): Schema name to filter (e.g., "cs", "dms", "los", "mls")

Example:

Show me all tables in the cs schema

3. describe_table

Get detailed column information for a specific table.

Parameters:

  • table_name (required): Name of the table
  • schema (optional): Schema name (default: "public")

Example:

Describe the structure of the customers table in the cs schema

4. execute_query

Execute a SQL query on the database.

Parameters:

  • query (required): SQL query string
  • params (optional): Array of parameters for parameterized queries

Examples:

Query all customers with credit score above 700

SELECT * FROM cs.customers WHERE credit_score > 700

Get total loan amount by customer

SELECT customer_code, SUM(loan_amount) as total_loans 
FROM los.loans 
GROUP BY customer_code

Database Schema

cs (CustomerScoreView)

  • customers: Customer information and credit scores
  • credit_assessments: Credit assessment history

dms (Data Management System)

  • documents: Document metadata and storage info
  • document_versions: Document version history

los (Loan Management System)

  • loans: Loan accounts and terms
  • payments: Payment history

mls (Mahatheun Leasing System)

  • contracts: Lease contract information
  • assets: Asset details for leased items
  • lease_payments: Lease payment records

Project Structure

mcp-database/
├── src/
│   ├── server.py          # Main MCP server
│   ├── database.py        # Database connection manager
│   └── tools.py           # MCP tool definitions
├── db/
│   └── init.sql           # Database initialization script
├── raw_data/
│   ├── cs/                # CustomerScoreView CSV files
│   ├── dms/               # Data Management System CSV files
│   ├── los/               # Loan Management System CSV files
│   └── mls/               # Mahatheun Leasing System CSV files
├── docker-compose.yml     # Docker configuration
├── requirements.txt       # Python dependencies
├── pyproject.toml        # Python project metadata
└── .env.example          # Environment variable template

Troubleshooting

Docker container won't start

# Check logs
docker-compose logs postgres

# Restart container
docker-compose restart postgres

Connection refused error

  • Ensure PostgreSQL is running: docker-compose ps
  • Check port 5432 is not in use by another process
  • Verify .env file has correct credentials

Import errors in Python

# Reinstall dependencies
pip install --upgrade -r requirements.txt

Development

To extend the server:

  1. Add new tools in src/tools.py
  2. Register handlers in src/server.py
  3. Update database schema in db/init.sql
  4. Add sample data in raw_data/

License

This project is provided as-is for database integration purposes.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured