
MCP CSV Analysis With Gemini AI
falahgs
README
MCP CSV Analysis with Gemini AI
A powerful Model Context Protocol (MCP) server that provides advanced CSV analysis and thinking generation capabilities using Google's Gemini AI. This tool integrates seamlessly with Claude Desktop and offers sophisticated data analysis, visualization, and natural language processing features.
🌟 Features
1. CSV Analysis Tool (analyze-csv
)
- Comprehensive Data Analysis: Performs detailed Exploratory Data Analysis (EDA) on CSV files
- Two Analysis Modes:
basic
: Quick overview and essential statisticsdetailed
: In-depth analysis with advanced insights
- Analysis Components:
- Statistical analysis of all columns
- Data quality assessment
- Pattern recognition
- Correlation analysis
- Feature importance evaluation
- Preprocessing recommendations
- Business insights
- Visualization suggestions
2. Data Visualization Tool (visualize-data
)
- Interactive Visualizations: Creates beautiful and informative charts using Plotly
- Visualization Types:
basic
: Automatic visualization selection based on data typesadvanced
: Complex multi-variable visualizationscustom
: User-defined chart configurations
- Chart Types:
- Histograms for distribution analysis
- Correlation heatmaps
- Scatter plots
- Line charts
- Bar charts
- Box plots
- Features:
- Automatic data type detection
- Smart chart selection
- Interactive plots
- High-resolution exports
- Customizable layouts
3. Thinking Generation Tool (generate-thinking
)
- Generates detailed thinking process text using Gemini's experimental model
- Supports complex reasoning and analysis
- Saves responses with timestamps
- Customizable output directory
🚀 Quick Start
Prerequisites
- Node.js (v16 or higher)
- TypeScript
- Claude Desktop
- Google Gemini API Key
- Plotly Account (for visualizations)
Installation
- Clone and setup:
git clone [your-repo-url]
cd mcp-csv-analysis-gemini
npm install
- Create
.env
file:
GEMINI_API_KEY=your_api_key_here
- Build the project:
npm run build
Claude Desktop Configuration
- Create/Edit
%AppData%/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"CSV Analysis": {
"command": "node",
"args": ["path/to/mcp-csv-analysis-gemini/dist/index.js"],
"cwd": "path/to/mcp-csv-analysis-gemini",
"env": {
"GEMINI_API_KEY": "your_api_key_here",
"PLOTLY_USERNAME": "your_plotly_username",
"PLOTLY_API_KEY": "your_plotly_api_key"
}
}
}
}
- Restart Claude Desktop
📊 Using the Tools
CSV Analysis
{
"name": "analyze-csv",
"arguments": {
"csvPath": "./data/your_file.csv",
"analysisType": "detailed",
"outputDir": "./custom_output"
}
}
Data Visualization
{
"name": "visualize-data",
"arguments": {
"csvPath": "./data/your_file.csv",
"visualizationType": "basic",
"columns": ["column1", "column2"],
"chartTypes": ["histogram", "scatter"],
"outputDir": "./custom_output"
}
}
Thinking Generation
{
"name": "generate-thinking",
"arguments": {
"prompt": "Your complex analysis prompt here",
"outputDir": "./custom_output"
}
}
📁 Output Structure
output/
├── analysis/
│ ├── csv_analysis_[timestamp]_part1.txt
│ ├── csv_analysis_[timestamp]_part2.txt
│ └── csv_analysis_[timestamp]_summary.txt
├── visualizations/
│ ├── histogram_[column]_[timestamp].png
│ ├── scatter_[columns]_[timestamp].png
│ └── correlation_heatmap_[timestamp].png
└── thinking/
└── gemini_thinking_[timestamp].txt
📊 Visualization Types
Basic Visualizations
- Automatically generated based on data types
- Includes:
- Histograms for numeric columns
- Correlation heatmaps
- Basic scatter plots
Advanced Visualizations
- More sophisticated charts
- Multiple variables
- Enhanced layouts
- Custom color schemes
Custom Visualizations
- User-defined chart types
- Configurable parameters
- Custom styling options
- Advanced plot layouts
🛠️ Development
Available Scripts
npm run build
: Compile TypeScript to JavaScriptnpm run start
: Start the MCP servernpm run dev
: Run in development mode with ts-node
Environment Variables
GEMINI_API_KEY
: Your Google Gemini API keyPLOTLY_USERNAME
: Your Plotly usernamePLOTLY_API_KEY
: Your Plotly API key
📝 Analysis Details
Basic Analysis Includes
- Basic statistical summary for each column
- Data quality assessment
- Key insights and patterns
- Potential correlations
- Recommendations for further analysis
Detailed Analysis Includes
- Comprehensive statistical analysis
- Distribution analysis
- Central tendency measures
- Dispersion measures
- Outlier detection
- Advanced data quality assessment
- Pattern recognition
- Correlation analysis
- Feature importance analysis
- Preprocessing recommendations
- Visualization suggestions
- Business insights
⚠️ Limitations
- Maximum file size: Dependent on system memory
- Rate limits: Based on Gemini API and Plotly quotas
- Output token limit: 65,536 tokens per response
- CSV format: Standard CSV files only
- Analysis time: Varies with data size and complexity
- Visualization limits: Based on Plotly free tier restrictions
🔒 Security Notes
- Store your API keys securely
- Don't share your
.env
file - Review CSV data for sensitive information
- Use custom output directories for sensitive analyses
- Secure your Plotly credentials
🐛 Troubleshooting
Common Issues
-
API Key Error
- Verify
.env
file exists - Check API key validity
- Ensure proper environment loading
- Verify
-
CSV Parsing Error
- Verify CSV file format
- Check file permissions
- Ensure file is not empty
-
Claude Desktop Connection
- Verify config.json syntax
- Check file paths in config
- Restart Claude Desktop
Debug Mode
Add DEBUG=true
to your .env
file for verbose logging:
GEMINI_API_KEY=your_key_here
DEBUG=true
📚 API Reference
CSV Analysis Tool
interface AnalyzeCSVParams {
csvPath: string; // Path to CSV file
outputDir?: string; // Optional output directory
analysisType?: 'basic' | 'detailed'; // Analysis type
}
Data Visualization Tool
interface VisualizeDataParams {
csvPath: string; // Path to CSV file
outputDir?: string; // Optional output directory
visualizationType?: 'basic' | 'advanced' | 'custom'; // Visualization type
columns?: string[]; // Columns to visualize
chartTypes?: ('scatter' | 'line' | 'bar' | 'histogram' | 'box' | 'heatmap')[]; // Chart types
customConfig?: Record<string, any>; // Custom configuration
}
Thinking Generation Tool
interface GenerateThinkingParams {
prompt: string; // Analysis prompt
outputDir?: string; // Optional output directory
}
🤝 Contributing
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
📄 License
MIT License - See LICENSE file for details
Recommended Servers
Crypto Price & Market Analysis MCP Server
A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.
MCP PubMed Search
Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.
dbt Semantic Layer MCP Server
A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.
mixpanel
Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Nefino MCP Server
Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.
Vectorize
Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.
Mathematica Documentation MCP server
A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.
kb-mcp-server
An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded
Research MCP Server
The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.