MCP Creator Growth
An interactive learning assistant that helps developers understand AI-generated code changes through quizzes and blocking learning sessions. It tracks and searches debugging experiences using RAG to ensure users build long-term technical understanding rather than just copy-pasting solutions.
README
<img src="assets/icon.png" width="48" height="48" align="top" style="margin-right: 10px;"> MCP Creator Growth
A context-aware Model Context Protocol (MCP) server that acts as a learning sidecar for AI coding assistants. It helps developers learn from AI-generated code changes through interactive quizzes and provides agents with a persistent project-specific debugging memory.
🌐 Resources
| Resource | Description |
|---|---|
| Glama MCP Marketplace | Official MCP server listing with installation guides |
| DeepWiki Documentation | AI-generated deep analysis of the codebase |
| GitHub Repository | Source code, issues, and contributions |
🚀 Why Use This?
| For | Benefit |
|---|---|
| Developers | Don't just accept AI code—understand it. Request a quiz to verify your grasp of the logic, security, or performance implications. |
| AI Agents | Stop solving the same bug twice. The server quietly records debugging solutions and retrieves them automatically when similar errors occur. |
📦 Available Tools
| Tool | Type | Description |
|---|---|---|
learning_session |
🎓 Interactive | Opens a WebUI quiz based on recent code changes. Blocks until user completes learning. |
debug_search |
🔍 Silent RAG | Searches project debug history for relevant past solutions. Auto-triggered on errors. |
debug_record |
📝 Silent | Records debugging experiences to project knowledge base. Auto-triggered after fixes. |
term_get |
📚 Reference | Fetches programming terms/concepts. Tracks shown terms to avoid repetition. |
get_system_info |
ℹ️ Utility | Returns system environment information (platform, Python version, etc.). |
Tool Details
<details> <summary><b>🎓 learning_session</b> - Interactive Learning Card</summary>
Trigger: User explicitly requests (e.g., "Quiz me", "Test my understanding")
Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
project_directory |
string | "." |
Project directory path |
summary |
string | — | Structured summary of Agent's actions |
reasoning |
object | null | 5-Why reasoning (goal, trigger, mechanism, alternatives, risks) |
quizzes |
array | auto-generated | 3 quiz questions with options, answer, explanation |
focus_areas |
array | ["logic"] |
Focus areas: logic, security, performance, architecture, syntax |
timeout |
int | 600 | Timeout in seconds (60-7200) |
Returns: {"status": "completed", "action": "HALT_GENERATION"}
</details>
<details> <summary><b>🔍 debug_search</b> - Search Debug History</summary>
Trigger: Auto-called when encountering errors (silent, no UI)
Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
query |
string | — | Error message or description to search |
project_directory |
string | "." |
Project directory path |
error_type |
string | null | Filter by error type (e.g., ImportError) |
tags |
array | null | Filter by tags |
limit |
int | 5 | Maximum results (1-20) |
Returns: {"results": [...], "count": N}
</details>
<details> <summary><b>📝 debug_record</b> - Record Debug Experience</summary>
Trigger: Auto-called after fixing bugs (silent, background)
Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
context |
object | — | Error context: {error_type, error_message, file, line} |
cause |
string | — | Root cause analysis |
solution |
string | — | Solution that worked |
project_directory |
string | "." |
Project directory path |
tags |
array | null | Tags for categorization |
Returns: {"ok": true, "id": "..."}
</details>
<details> <summary><b>📚 term_get</b> - Get Programming Terms</summary>
Available Domains: programming_basics, data_structures, algorithms, software_design, web_development, version_control, testing, security, databases, devops
Parameters:
| Parameter | Type | Default | Description |
|---|---|---|---|
project_directory |
string | "." |
Project directory path |
count |
int | 3 | Number of terms (1-5) |
domain |
string | null | Filter by domain |
Returns: {"terms": [...], "count": N, "remaining": N}
</details>
🛠️ Installation
One-Line Install (Recommended)
<table> <tr> <th>Platform</th> <th>Command</th> </tr> <tr> <td><b>macOS / Linux</b></td> <td>
curl -fsSL https://raw.githubusercontent.com/SunflowersLwtech/mcp_creator_growth/main/scripts/install.sh | bash
</td> </tr> <tr> <td><b>Windows (PowerShell)</b></td> <td>
irm https://raw.githubusercontent.com/SunflowersLwtech/mcp_creator_growth/main/scripts/install.ps1 | iex
</td> </tr> </table>
The installer will:
- Auto-detect your Python environment (uv → conda → venv)
- Clone the repository to
~/mcp-creator-growth - Create virtual environment and install dependencies
- Print the exact command to configure your IDE
Manual Installation
<details> <summary>Click to expand manual installation steps</summary>
Prerequisites: Python 3.11+ or uv
# 1. Clone the repository
git clone https://github.com/SunflowersLwtech/mcp_creator_growth.git
cd mcp_creator_growth
# 2. Create virtual environment and install
# Using uv (recommended)
uv venv --python 3.11 .venv
source .venv/bin/activate # macOS/Linux
# .venv\Scripts\activate # Windows
uv pip install -e ".[dev]"
# Or using standard venv
python -m venv venv
source venv/bin/activate # macOS/Linux
# venv\Scripts\activate # Windows
pip install -e ".[dev]"
</details>
⚙️ IDE Configuration
Claude Code (CLI) — One Command Setup
After installation, configure Claude Code with a single command:
<table> <tr> <th>Platform</th> <th>Command</th> </tr> <tr> <td><b>macOS / Linux</b></td> <td>
# User scope (available across all projects)
claude mcp add --scope user mcp-creator-growth -- ~/mcp-creator-growth/.venv/bin/mcp-creator-growth
# Or project scope (shared with team via .mcp.json)
claude mcp add --scope project mcp-creator-growth -- ~/mcp-creator-growth/.venv/bin/mcp-creator-growth
</td> </tr> <tr> <td><b>Windows (PowerShell)</b></td> <td>
# User scope
claude mcp add --scope user mcp-creator-growth -- "$env:USERPROFILE\mcp-creator-growth\.venv\Scripts\mcp-creator-growth.exe"
# Or project scope
claude mcp add --scope project mcp-creator-growth -- "$env:USERPROFILE\mcp-creator-growth\.venv\Scripts\mcp-creator-growth.exe"
</td> </tr> </table>
Verify installation:
claude mcp list # List all MCP servers
claude mcp get mcp-creator-growth # Check this server's status
Manual JSON Configuration
For Claude Desktop, Cursor, Windsurf, or other MCP-compatible IDEs:
<table> <tr> <th>IDE</th> <th>Config File Location</th> </tr> <tr> <td>Claude Desktop</td> <td>
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
</td> </tr> <tr> <td>Claude Code (User)</td> <td><code>~/.claude.json</code></td> </tr> <tr> <td>Claude Code (Project)</td> <td><code>.mcp.json</code> in project root</td> </tr> <tr> <td>Cursor</td> <td>Settings → MCP → Add New MCP Server</td> </tr> <tr> <td>Windsurf</td> <td><code>~/.codeium/windsurf/mcp_config.json</code></td> </tr> </table>
JSON Configuration:
<details> <summary><b>macOS / Linux</b></summary>
{
"mcpServers": {
"mcp-creator-growth": {
"command": "/Users/YOUR_USERNAME/mcp-creator-growth/.venv/bin/mcp-creator-growth",
"args": []
}
}
}
</details>
<details> <summary><b>Windows</b></summary>
{
"mcpServers": {
"mcp-creator-growth": {
"command": "C:\\Users\\YOUR_USERNAME\\mcp-creator-growth\\.venv\\Scripts\\mcp-creator-growth.exe",
"args": []
}
}
}
</details>
Note: Replace
YOUR_USERNAMEwith your actual username, or use the full path printed by the installer.
🖼️ Screenshots
Learning Session WebUI

🔒 Security & Privacy
| Aspect | Details |
|---|---|
| Local First | All data stored in .mcp-sidecar/ directory within your project |
| No Telemetry | Zero data sent to external servers |
| Full Control | Delete .mcp-sidecar/ anytime to reset all data |
🔧 Environment Variables
| Variable | Default | Description |
|---|---|---|
MCP_DEBUG |
false |
Enable debug logging (true, 1, yes, on) |
MCP_TIMEOUT |
120000 |
MCP server startup timeout in ms |
MAX_MCP_OUTPUT_TOKENS |
25000 |
Maximum tokens for MCP output |
🤝 Contributing
We welcome contributions! Please follow these steps:
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Install dev dependencies:
uv pip install -e ".[dev]" - Make changes and run tests:
pytest - Submit a Pull Request
See CONTRIBUTING.md for detailed guidelines.
📬 Contact
| Channel | Address |
|---|---|
| sunflowers0607@outlook.com | |
| weiliu0607@gmail.com | |
| GitHub Issues | Open an Issue |
📄 License
This project is licensed under the MIT License.
<p align="center"> Built with <a href="https://github.com/jlowin/fastmcp">FastMCP</a> • <a href="https://modelcontextprotocol.io">MCP Standard</a> • <a href="https://glama.ai/mcp/servers/@SunflowersLwtech/mcp_creator_growth">Glama MCP</a> </p>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.