MCP Code Mode
Enables AI agents to write and execute Python code in an isolated sandbox that can orchestrate multiple MCP tool calls, reducing context window bloat and improving efficiency for complex workflows.
README
MCP Code Mode
Prototype implementation for the Code Execution MCP Server with DSpy. The "Code Execution with MCP" architecture combines the strengths of Large Language Models at code generation with the Model Context Protocol for tool integration. This system enables an AI agent to write Python code that runs in an isolated sandbox while seamlessly calling external MCP tools.
Quick Start
1. Installation
Requires Python 3.11+ and Node.js 20+.
# Create virtual environment
python3.11 -m venv .venv
source .venv/bin/activate
# Install dependencies
pip install -e .[dev]
# Install Node.js dependencies for reference servers
npm install -g npm@latest
2. Configuration
Copy the example environment file and configure secrets:
cp .env.example .env
Configure your MCP servers in mcp_servers.json:
{
"servers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/your-working-folder"],
"description": "Local file system operations"
}
}
}
3. Running the Server
Launch the Code Execution MCP server:
python -m mcp_code_mode.executor_server
4. Verification
Verify your setup by running the debug executor script. This script simulates an MCP client, connects to the server, and runs a test task to ensure the agent and tools are working correctly.
Before running the script:
- Configure the MCP servers you want to interact with in
mcp_servers.json. - Define the specific task you want the agent to perform by editing the
taskvariable inscripts/debug_executor.py.
python scripts/debug_executor.py
Development Commands
| Command | Description |
|---|---|
pytest |
Run all tests |
ruff check . |
Lint the codebase |
black . |
Format the codebase |
mypy src |
Type check the source |
python scripts/test_dspy_sandbox.py |
Sanity check the sandbox |
python scripts/debug_executor.py |
Integration test with mock client |
Execution Environment & Guardrails
By default, the system uses a Local Python Executor (LocalPythonExecutor) which runs code in the same process as the server. This is necessary because the strict Pyodide sandbox has limitations with network I/O, preventing it from calling back to other MCP tools in some environments.
Guardrails
Even with the local executor, the system enforces policies before code execution:
- Limits: 8k characters / 400 lines max.
- Imports: Allowlist only (
json,math,re,datetime, etc.). - Tokens: Disallows potentially dangerous tokens (
subprocess,exec,eval).
Violations return a POLICY_VIOLATION error.
Note: You can force the use of the Pyodide sandbox by setting
MCP_EXECUTOR=pyodide, but this may break tool calls depending on your environment.
Architecture
Overview
┌─────────────────────────────────────────────────────────────┐
│ MCP Client (Claude, etc.) │
└────────────────────────┬────────────────────────────────────┘
│ MCP Protocol (stdio/HTTP/SSE)
▼
┌─────────────────────────────────────────────────────────────┐
│ FastMCP Server │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ @mcp.tool │ │
│ │ async def execute_code(code: str): │ │
│ │ # 1. Execute in Local Executor (default) │ │
│ │ result = await executor.run(code) │ │
│ │ return result │ │
│ └──────────────────────────────────────────────────────┘ │
└────────────────────────┬────────────────────────────────────┘
│
▼
┌──────────────────────────────┐
│ Execution Engine: │
│ • LocalPythonExecutor │
│ (or Pyodide Sandbox) │
└──────────────────────────────┘
Why Code Mode?
Traditional MCP implementations face critical challenges:
- Context Window Bloat: Every tool definition consumes tokens, limiting scalability.
- Token Cost: Multiple back-and-forth tool calls are expensive.
- Latency: Sequential tool invocations create cumulative delays.
- Composability: Complex workflows require many discrete steps.
Code Mode addresses these by leveraging what LLMs excel at: writing code. Rather than making multiple tool calls, the agent writes a Python script that orchestrates all necessary operations internally.
Core Components
-
The Executor Server (FastMCP) (
src/mcp_code_mode/executor_server.py) The server exposes anexecute_codetool backed by a Python executor (Local or Pyodide). Usesfastmcpto handle the MCP protocol anddspyfor execution logic. -
Configuration-Driven Discovery (
mcp_servers.json) The system usesmcp_servers.jsonto explicitly configure which MCP servers to connect to. Loaded bysrc/mcp_code_mode/mcp_manager.py. -
Tool Schema Formatting (
src/mcp_code_mode/tool_formatter.py) Formats discovered MCP tools into readable documentation that gets passed to the code generation LLM, so it knows what tools exist. -
Context Injection The formatted tool schemas are passed as an input field to the LLM. The LLM knows tool names, parameters, and usage examples before it writes the code.
Information Flow
1. mcp_servers.json (Defines servers)
↓
2. MCPServerManager.initialize()
├─ Connect to configured servers
├─ Call list_tools() on each
└─ Convert to DSpy tools
↓
3. ToolSchemaFormatter.format_for_llm()
└─ Creates readable documentation
↓
4. CodeExecutionAgent
└─ Stores both callable tools and schemas
↓
5. Agent Generation
└─ Passes tool_context to LLM
↓
6. Code Execution
└─ Code runs in sandbox, calling actual tools via MCP
Troubleshooting
Timeout Issues: If the interpreter times out, it may enter a bad state. Currently, the best fix is to restart the server or reconnect the client to get a fresh interpreter instance.
Missing Tools:
Ensure mcp_servers.json paths are correct and that you have run npm install if using Node-based servers.
References
mcp-code-mode
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases