MCP Business AI Transformation

MCP Business AI Transformation

Enterprise-grade MCP server with multi-agent system that enables AI-powered business transformation across finance, healthcare, retail, manufacturing, and technology domains through specialized agents for data analysis, API execution, and report generation.

Category
Visit Server

README

MCP Business AI Transformation

Enterprise-grade MCP (Model Context Protocol) server with multi-agent system for business AI transformation.

πŸ—οΈ Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Agent Layer   │◄──►│   MCP Gateway    │◄──►│ Business APIs   β”‚
β”‚  (Orchestrator) β”‚    β”‚  (Protocol Hub)  β”‚    β”‚  (External)     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                       β”‚                       β”‚
         β–Ό                       β–Ό                       β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   LLM Fabric    β”‚    β”‚ State Manager    β”‚    β”‚ Monitoring Hub  β”‚
β”‚ (Multi-Model)   β”‚    β”‚ (Redis+Postgres) β”‚    β”‚ (Observability) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸš€ Features

Core MCP Server

  • FastAPI-based high-performance server
  • MCP Protocol compliant (2024-11-05 spec)
  • Multi-provider LLM support (Evolution Foundation Models, OpenAI, HuggingFace)
  • Circuit breaker pattern for external API resilience
  • Rate limiting with Redis-based sliding window
  • JWT & API Key authentication
  • Prometheus metrics and OpenTelemetry tracing

Multi-Agent System

  • Specialized Agents: Data Analyst, API Executor, Business Validator, Report Generator
  • Agent Registry for dynamic agent management
  • Message Bus for inter-agent communication
  • Task Orchestration with intelligent agent selection
  • LangChain/LlamaIndex integration for advanced AI capabilities

Enterprise Features

  • Real-time Dashboard with React + TypeScript
  • Business Domain Support: Finance, Healthcare, Retail, Manufacturing, Technology
  • Observability Stack: Prometheus, Grafana, Jaeger
  • Docker Compose for easy deployment
  • Production-ready with security best practices

πŸ› οΈ Technology Stack

Frontend

  • Next.js 15 with App Router
  • TypeScript 5 for type safety
  • Tailwind CSS 4 with shadcn/ui components
  • Real-time updates with WebSocket support

Backend

  • Python 3.11 with FastAPI
  • PostgreSQL for persistent storage
  • Redis for caching and rate limiting
  • AsyncIO for high concurrency

AI/ML

  • Evolution Foundation Models (Cloud.ru)
  • OpenAI API compatibility
  • LangChain for agent orchestration
  • LlamaIndex for data indexing

DevOps

  • Docker containerization
  • Prometheus monitoring
  • Grafana dashboards
  • Jaeger distributed tracing

πŸ“¦ Quick Start

Prerequisites

  • Docker & Docker Compose
  • Node.js 18+ (for local development)
  • Python 3.11+ (for local development)

Environment Configuration

Create a .env file:

# API Keys
EVOLUTION_API_KEY=your_evolution_api_key
OPENAI_API_KEY=your_openai_api_key
HUGGINGFACE_API_KEY=your_huggingface_api_key

# Security
SECRET_KEY=your-super-secret-key-change-in-production

# Database (optional, defaults work with Docker)
DATABASE_URL=postgresql+asyncpg://postgres:password@localhost:5432/mcp_db
REDIS_URL=redis://localhost:6379

Start the System

# Start all services
docker-compose up -d

# View logs
docker-compose logs -f

# Stop services
docker-compose down

Access Points

  • Frontend Dashboard: http://localhost:3000
  • MCP Server API: http://localhost:8000
  • API Documentation: http://localhost:8000/docs
  • Grafana Dashboard: http://localhost:3001 (admin/admin)
  • Prometheus: http://localhost:9091
  • Jaeger Tracing: http://localhost:16686

πŸ”§ Development

Local Development Setup

Backend (MCP Server)

cd mcp_server
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000

Agent System

cd agent_system
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python main.py

Frontend

npm install
npm run dev

Project Structure

β”œβ”€β”€ src/                          # Next.js frontend
β”‚   β”œβ”€β”€ app/                      # App Router pages
β”‚   β”œβ”€β”€ components/               # React components
β”‚   └── lib/                      # Utility functions
β”œβ”€β”€ mcp_server/                   # FastAPI MCP server
β”‚   β”œβ”€β”€ app/                      # Application code
β”‚   β”‚   β”œβ”€β”€ api/v1/              # API endpoints
β”‚   β”‚   β”œβ”€β”€ core/                # Core services
β”‚   β”‚   └── middleware/          # Custom middleware
β”‚   └── tests/                   # Test suite
β”œβ”€β”€ agent_system/                 # Multi-agent system
β”‚   β”œβ”€β”€ core/                    # Agent framework
β”‚   β”œβ”€β”€ agents/                  # Specialized agents
β”‚   └── llm/                     # LLM providers
β”œβ”€β”€ docker-compose.yml           # Multi-service deployment
└── docs/                        # Documentation

πŸ“Š API Usage

MCP Protocol

The server implements the MCP protocol for tool and resource management:

# Initialize connection
curl -X POST http://localhost:8000/mcp \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 1,
    "method": "initialize",
    "params": {
      "protocolVersion": "2024-11-05",
      "capabilities": {}
    }
  }'

# List available tools
curl -X POST http://localhost:8000/mcp \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 2,
    "method": "tools/list"
  }'

# Execute a tool
curl -X POST http://localhost:8000/mcp \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 3,
    "method": "tools/call",
    "params": {
      "name": "financial_analyzer",
      "arguments": {
        "data": {...}
      }
    }
  }'

REST API

# Create a business task
curl -X POST http://localhost:8000/api/v1/resources/tasks \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_JWT_TOKEN" \
  -d '{
    "title": "Financial Analysis Q4",
    "description": "Analyze quarterly financial data",
    "domain": "finance",
    "priority": "high"
  }'

# Get system status
curl -X GET http://localhost:8000/api/v1/admin/system/status

# Health check
curl -X GET http://localhost:8000/api/v1/health

πŸ” Monitoring & Observability

Metrics

  • Request latency and throughput
  • Agent performance and task completion rates
  • LLM token usage and costs
  • External API success rates and circuit breaker status

Tracing

  • Distributed tracing with Jaeger
  • Request correlation IDs
  • Agent communication tracing

Logging

  • Structured logging with correlation IDs
  • Log levels: DEBUG, INFO, WARNING, ERROR
  • JSON format for easy parsing

πŸ”’ Security

Authentication

  • JWT tokens for user authentication
  • API keys for service-to-service communication
  • Rate limiting per user/API key

Authorization

  • Role-based access control (RBAC)
  • Resource-level permissions
  • CORS configuration

Data Protection

  • Input validation and sanitization
  • SQL injection prevention
  • XSS protection headers

πŸš€ Deployment

Production Deployment

# Set production environment variables
export NODE_ENV=production
export DEBUG=false

# Deploy with production configurations
docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d

Cloud.ru Evolution AI Agents

The system is designed to deploy on Cloud.ru Evolution AI Agents platform:

  1. Container Registry: Push Docker images to Cloud.ru registry
  2. AI Agent Configuration: Configure agent endpoints and API keys
  3. Load Balancing: Set up load balancer for high availability
  4. Monitoring: Configure Cloud.ru monitoring integration

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

  • Documentation: Check the /docs directory
  • API Docs: Visit http://localhost:8000/docs
  • Issues: Create an issue on GitHub
  • Discussions: Join our GitHub Discussions

πŸ—ΊοΈ Roadmap

Phase 1: Core Infrastructure βœ…

  • [x] MCP Server implementation
  • [x] Multi-agent system
  • [x] LLM provider integration
  • [x] Basic monitoring

Phase 2: Advanced Features (In Progress)

  • [ ] Advanced agent orchestration
  • [ ] Custom tool development framework
  • [ ] Advanced analytics and reporting
  • [ ] Multi-tenancy support

Phase 3: Enterprise Features (Planned)

  • [ ] Advanced security features
  • [ ] Compliance certifications
  • [ ] Advanced monitoring and alerting
  • [ ] Performance optimization

Phase 4: AI/ML Enhancements (Future)

  • [ ] Custom model training
  • [ ] Advanced prompt engineering
  • [ ] Multi-modal AI capabilities
  • [ ] AutoML integration

Built with ❀️ for enterprise AI transformation

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured