MCP Autonomous Analyst

MCP Autonomous Analyst

A local, agentic AI pipeline that analyzes tabular data, detects anomalies, and generates interpretive summaries using local LLMs orchestrated via the Model Context Protocol.

Category
Visit Server

README

<p align="center"> <img src="https://img.shields.io/badge/Python-3.12-blue?logo=python" alt="Python Badge"/> <img src="https://img.shields.io/badge/MCP-Model_Context_Protocol-purple" alt="MCP Badge"/> <img src="https://img.shields.io/badge/Ollama-LLM-green" alt="Ollama Badge"/> <img src="https://img.shields.io/badge/ChromaDB-VectorDB-orange" alt="ChromaDB Badge"/> <img src="https://img.shields.io/badge/FastAPI-Web_UI-teal" alt="FastAPI Badge"/> <img src="https://img.shields.io/badge/Uvicorn-ASGI_Server-black" alt="Uvicorn Badge"/> </p>

Autonomous Analyst

🧠 Overview

Autonomous Analyst is a local, agentic AI pipeline that:

  • Analyzes tabular data
  • Detects anomalies with Mahalanobis distance
  • Uses a local LLM (llama3.2:1b via Ollama) to generate interpretive summaries
  • Logs results to ChromaDB for semantic recall
  • Is fully orchestrated via the Model Context Protocol (MCP)

⚙️ Features

Component Description
FastAPI Web UI Friendly dashboard for synthetic or uploaded datasets
MCP Tool Orchestration Each process step is exposed as a callable MCP tool
Anomaly Detection Mahalanobis Distance-based outlier detection
Visual Output Saved scatter plot of inliers vs. outliers
Local LLM Summarization Insights generated using llama3.2:1b via Ollama
Vector Store Logging Summaries are stored in ChromaDB for persistent memory
Agentic Planning Tool A dedicated LLM tool (autonomous_plan) determines next steps based on dataset context
Agentic Flow LLM + memory + tool use + automatic reasoning + context awareness

🧪 Tools Defined (via MCP)

Tool Name Description LLM Used
generate_data Create synthetic tabular data (Gaussian + categorical)
analyze_outliers Label rows using Mahalanobis distance
plot_results Save a plot visualizing inliers vs outliers
summarize_results Interpret and explain outlier distribution using llama3.2:1b
summarize_data_stats Describe dataset trends using llama3.2:1b
log_results_to_vector_store Store summaries to ChromaDB for future reference
search_logs Retrieve relevant past sessions using vector search (optional LLM use) ⚠️
autonomous_plan Run the full pipeline, use LLM to recommend next actions automatically

🤖 Agentic Capabilities

  • Autonomy: LLM-guided execution path selection with autonomous_plan
  • Tool Use: Dynamically invokes registered MCP tools via LLM inference
  • Reasoning: Generates technical insights from dataset conditions and outlier analysis
  • Memory: Persists and recalls knowledge using ChromaDB vector search
  • LLM: Powered by Ollama with llama3.2:1b (temperature = 0.1, deterministic)

🚀 Getting Started

1. Clone and Set Up

git clone https://github.com/MadMando/mcp-autonomous-analyst.git
cd mcp-autonomous-analyst
conda create -n mcp-agentic python=3.11 -y
conda activate mcp-agentic
pip install uv
uv pip install -r requirements.txt

2. Start the MCP Server

mcp run server.py --transport streamable-http

3. Start the Web Dashboard

uvicorn web:app --reload --port 8001

Then visit: http://localhost:8000


🌐 Dashboard Flow

  • Step 1: Upload your own dataset or click Generate Synthetic Data
  • Step 2: The system runs anomaly detection on feature_1 vs feature_2
  • Step 3: Visual plot of outliers is generated
  • Step 4: Summaries are created via LLM
  • Step 5: Results are optionally logged to vector store for recall

📁 Project Layout

📦 autonomous-analyst/
├── server.py                  # MCP server
├── web.py                     # FastAPI + MCP client (frontend logic)
├── tools/
│   ├── synthetic_data.py
│   ├── outlier_detection.py
│   ├── plotter.py
│   ├── summarizer.py
│   ├── vector_store.py
├── static/                   # Saved plot
├── data/                     # Uploaded or generated dataset
├── requirements.txt
├── .gitignore
└── README.md

📚 Tech Stack

  • MCP SDK: mcp
  • LLM Inference: Ollama running llama3.2:1b
  • UI Server: FastAPI + Uvicorn
  • Memory: ChromaDB vector database
  • Data: pandas, matplotlib, scikit-learn

✅ .gitignore Additions

__pycache__/
*.pyc
*.pkl
.env
static/
data/

🙌 Acknowledgements

This project wouldn't be possible without the incredible work of the open-source community. Special thanks to:

Tool / Library Purpose Repository
🧠 Model Context Protocol (MCP) Agentic tool orchestration & execution modelcontextprotocol/python-sdk
💬 Ollama Local LLM inference engine (llama3.2:1b) ollama/ollama
🔍 ChromaDB Vector database for logging and retrieval chroma-core/chroma
🌐 FastAPI Interactive, fast web interface tiangolo/fastapi
Uvicorn ASGI server powering the FastAPI backend encode/uvicorn

💡 If you use this project, please consider starring or contributing to the upstream tools that make it possible.

This repo was created with the assistance of a local rag-llm using llama3.2:1b

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured