MCP Audio Transcriber
A portable, Dockerized Python tool that implements Model Context Protocol for audio transcription using Whisper models, featuring both CLI and web UI interfaces for converting audio files to JSON transcriptions.
README
MCP Audio Transcriber
A portable, Dockerized Python tool that implements a Model Context Protocol (MCP) for audio transcription using OpenAI's Whisper models—and even ships with a Streamlit-powered web UI so you can upload an audio file and download the transcription as JSON.
🚀 Features
- Modular MCP interface (
mcp.py) that defines a standardModelContextProtocol. - Whisper-based implementation (
WhisperMCP) for high-quality, multi-language transcription. - Command-line interface (
app.py) for batch or ad-hoc transcription:python app.py <input_audio> <output_json> [--model MODEL_NAME] - Docker support for a consistent runtime:
docker build -t mcp-transcriber . docker run --rm \ -v /full/path/to/data:/data \ mcp-transcriber:latest \ /data/input.wav /data/output.json - Streamlit web app (
streamlit_app.py) letting end users:- Upload any common audio file (.wav, .mp3, .ogg, .m4a)
- Choose a Whisper model size
- Preview the transcription live
- Download the JSON result with one click
📦 Prerequisites
- Python 3.10+
- ffmpeg installed & on your PATH
- (Optional) Docker Engine / Docker Desktop
- (Optional) Streamlit
🔧 Installation
-
Clone the repo
git clone https://github.com/ShreyasTembhare/MCP---Audio-Transcriber.git cd MCP---Audio-Transcriber -
Python dependencies & FFmpeg
pip install --upgrade pip pip install -r requirements.txt # On Ubuntu/Debian: sudo apt update && sudo apt install ffmpeg # On Windows: # Download a static build from https://ffmpeg.org and add its bin/ to your PATH -
(Optional) Docker
- Install Docker Desktop
- Enable WSL integration if using WSL2.
-
(Optional) Streamlit
pip install streamlit
🎯 Usage
1. CLI Transcription
python app.py <input_audio> <output_json> [--model tiny|base|small|medium|large]
<input_audio>: path to your audio file<output_json>: path where the JSON result will be saved--model: choose Whisper model size (default: base)
Example:
python app.py data/input.ogg data/output.json --model tiny
cat data/output.json
2. Docker
Build the image:
docker build -t mcp-transcriber .
Run it (mounting your data/ folder):
docker run --rm \
-v "/full/path/to/your/project/data:/data" \
mcp-transcriber:latest \
/data/input.wav /data/output.json
Then inspect:
ls data/output.json
cat data/output.json
3. Streamlit Web UI
Launch the app:
streamlit run streamlit_app.py
- Open http://localhost:8501 in your browser
- Upload an audio file
- Select the Whisper model size
- Click Transcribe
- Preview & download the resulting JSON
📁 Project Structure
MCP-Audio-Transcriber/
├── app.py # CLI entrypoint
├── mcp.py # Model Context Protocol + WhisperMCP
├── requirements.txt # Python dependencies
├── streamlit_app.py # Streamlit interface
├── Dockerfile # Container definition
├── .gitignore # ignore **pycache**, venvs, etc.
├── LICENSE # MIT license
└── data/ # sample input and output
├── input.ogg
└── output.json
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.