MCP Audio Transcriber

MCP Audio Transcriber

A portable, Dockerized Python tool that implements Model Context Protocol for audio transcription using Whisper models, featuring both CLI and web UI interfaces for converting audio files to JSON transcriptions.

Category
Visit Server

README

MCP Audio Transcriber

A portable, Dockerized Python tool that implements a Model Context Protocol (MCP) for audio transcription using OpenAI's Whisper models—and even ships with a Streamlit-powered web UI so you can upload an audio file and download the transcription as JSON.

🚀 Features

  • Modular MCP interface (mcp.py) that defines a standard ModelContextProtocol.
  • Whisper-based implementation (WhisperMCP) for high-quality, multi-language transcription.
  • Command-line interface (app.py) for batch or ad-hoc transcription:
    python app.py <input_audio> <output_json> [--model MODEL_NAME]
    
  • Docker support for a consistent runtime:
    docker build -t mcp-transcriber .
    docker run --rm \
      -v /full/path/to/data:/data \
      mcp-transcriber:latest \
      /data/input.wav /data/output.json
    
  • Streamlit web app (streamlit_app.py) letting end users:
    • Upload any common audio file (.wav, .mp3, .ogg, .m4a)
    • Choose a Whisper model size
    • Preview the transcription live
    • Download the JSON result with one click

📦 Prerequisites

  • Python 3.10+
  • ffmpeg installed & on your PATH
  • (Optional) Docker Engine / Docker Desktop
  • (Optional) Streamlit

🔧 Installation

  1. Clone the repo

    git clone https://github.com/ShreyasTembhare/MCP---Audio-Transcriber.git
    cd MCP---Audio-Transcriber
    
  2. Python dependencies & FFmpeg

    pip install --upgrade pip
    pip install -r requirements.txt
    # On Ubuntu/Debian:
    sudo apt update && sudo apt install ffmpeg
    # On Windows:
    #   Download a static build from https://ffmpeg.org and add its bin/ to your PATH
    
  3. (Optional) Docker

    • Install Docker Desktop
    • Enable WSL integration if using WSL2.
  4. (Optional) Streamlit

    pip install streamlit
    

🎯 Usage

1. CLI Transcription

python app.py <input_audio> <output_json> [--model tiny|base|small|medium|large]
  • <input_audio>: path to your audio file
  • <output_json>: path where the JSON result will be saved
  • --model: choose Whisper model size (default: base)

Example:

python app.py data/input.ogg data/output.json --model tiny
cat data/output.json

2. Docker

Build the image:

docker build -t mcp-transcriber .

Run it (mounting your data/ folder):

docker run --rm \
  -v "/full/path/to/your/project/data:/data" \
  mcp-transcriber:latest \
  /data/input.wav /data/output.json

Then inspect:

ls data/output.json
cat data/output.json

3. Streamlit Web UI

Launch the app:

streamlit run streamlit_app.py
  • Open http://localhost:8501 in your browser
  • Upload an audio file
  • Select the Whisper model size
  • Click Transcribe
  • Preview & download the resulting JSON

📁 Project Structure

MCP-Audio-Transcriber/
├── app.py               # CLI entrypoint
├── mcp.py               # Model Context Protocol + WhisperMCP
├── requirements.txt     # Python dependencies
├── streamlit_app.py     # Streamlit interface
├── Dockerfile           # Container definition
├── .gitignore           # ignore **pycache**, venvs, etc.
├── LICENSE              # MIT license
└── data/                # sample input and output
    ├── input.ogg
    └── output.json

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured