MCP-Airflow-API

MCP-Airflow-API

Monitor and manage Apache Airflow clusters through natural language queries via MCP tools: DAG inspection, task monitoring, health checks, and cluster analytics without API complexity. * Guide: https://call518.medium.com/mcp-airflow-api-a-model-context-protocol-mcp-server-for-apache-airflow-5dfdfb2

Category
Visit Server

README

MCP-Airflow-API

Apache Airflow MCP Server | Model Context Protocol | Natural Language DAG Management | Airflow API Integration

Benefits: Monitor and manage Apache Airflow clusters through natural language queries via MCP tools: DAG inspection, task monitoring, health checks, and cluster analytics without API complexity.

Verified on MSeeP

Deploy to PyPI with tag

Overview

MCP-Airflow-API is a Model Context Protocol (MCP) server that transforms Apache Airflow REST API operations into natural language tools for LLM integration. Built for DevOps engineers, data engineers, and Airflow administrators who need intuitive cluster management capabilities.

Key Features

  • 🔍 Natural Language Queries: Query Airflow DAGs, tasks, and runs using plain English
  • 📊 Comprehensive Monitoring: Real-time cluster health, DAG status, and performance analytics
  • 🔧 40+ MCP Tools: Complete Airflow API coverage including DAGs, tasks, pools, variables, connections, configuration, and XCom
  • Pagination: Optimized pagination for large Airflow environments (1000+ DAGs)

Topics

apache-airflow mcp model-context-protocol airflow-api dag-management data-engineering devops airflow-monitoring llm-integration natural-language docker python workflow-automation airflow-tools data-pipelines

Docuement for Airflow REST-API


Example Queries - List DAGs

ScreenShot-009

Go to More Example Queries


Setup mcp-config.json

This MCP server supports two connection modes: stdio (traditional) and streamable-http (Docker-based). The transport mode is automatically determined by the FASTMCP_PORT environment variable.

Method 1: Local MCP (transport="stdio")

{
  "mcpServers": {
    "airflow-api": {
      "command": "uvx",
      "args": ["--python", "3.11", "mcp-airflow-api"],
      "env": {
        "AIRFLOW_API_URL": "http://localhost:8080/api/v1",
        "AIRFLOW_API_USERNAME": "airflow",
        "AIRFLOW_API_PASSWORD": "airflow",
        "AIRFLOW_LOG_LEVEL": "INFO"
      }
    }
  }
}

Method 2: Remote MCP (transport="streamable-http")

On MCP-Server Host:

# Ambari connection settings
export AIRFLOW_API_URL="127.0.0.1"
export AIRFLOW_API_USERNAME="airflow"
export AIRFLOW_API_PASSWORD="changeme!@34"
export AIRFLOW_LOG_LEVEL="INFO"

# MCP transport settings (choose one method)
# Method A: Using environment variables
export FASTMCP_TYPE="streamable-http"
export FASTMCP_HOST="127.0.0.1" 
export FASTMCP_PORT="18001"

# Method B: Using CLI arguments
uvx mcp-airflow-api --type streamable-http --host 0.0.0.0 --port 8080

Default values:

  • --type: stdio
  • --host: 127.0.0.1
  • --port: 8080
    These defaults apply if no CLI arguments or environment variables are provided.

On MCP-Client Host:

{
  "mcpServers": {
    "ambari-api": {
      "type": "streamable-http",
      "url": "http://localhost:8080/mcp"
    }
  }
}

Dev Env

  • WSL2(networkingMode = bridged) + Docker-Desktop

  • Python 3.11 venv

    ### Option-1: with uv
    uv venv --python 3.11 --seed
    
    ### Option-2: with pip
    python3.11 -m venv .venv
    source .venv/bin/activate
    pip install -U pip
    

QuickStart (Demo - streamable-http): Running OpenWebUI and MCP-Airflow-API with Docker

Note: The following instructions assume you are using the streamable-http mode for MCP Server.

  1. Prepare an Airflow Demo cluster
  1. Install Docker and Docker Compose
  • Ensure Docker Engine and Docker Compose are installed and running

Setup and Configuration

  1. Clone and Configure
  • Clone Source codes
git clone <repository-url>
cd MCP-Airflow-API
  1. Ensure mcp-config.json
  • Check and edit mcp-config.json.http
  • The file is pre-configured for streamable-http transport
  1. Ensure docker-compose.yml
  • Check Network Port numbers that you want.
  1. Start the Docker Services
docker-compose up -d

Service Access and Verification

  1. Check MCP Server REST-API (via MCPO Swagger)
  • Access: http://localhost:8002/docs
  • Verify all Airflow API endpoints are available
  1. Access Open WebUI
  • URL: http://localhost:3002
  • The interface includes integrated MCPO proxy support
  1. Register the MCP Tools
  • In [Settings] — [Tools], add the API address of the “airflow-api” tool (the link displayed in the MCPO Swagger), e.g., http://localhost:8001/airflow-api
  1. Setup LLM Provider
  • In [Admin Pannel] - [Setting] - [Connection], configure API Key for OpenAI or Ollama.
  1. Completed!

Docker Configuration

The project includes a comprehensive Docker Compose setup with three separate services for optimal isolation and management:

Services Architecture

  1. open-webui: Web interface (port 3002)

    • Custom Open WebUI with integrated MCPO proxy support
    • Built from Dockerfile.OpenWebUI-MCPO-Proxy
  2. mcp-server: MCP Airflow API server (port 18002→8080, internal 8080)

    • FastMCP-based MCP server with Airflow API tools
    • Built from Dockerfile.MCP-Server (Rocky Linux 9.3, Python 3.11)
    • Runs http transport when FASTMCP_PORT is set
  3. mcpo-proxy: MCP-to-OpenAPI proxy (port 8002)

    • MCPO proxy for converting MCP tools to REST API endpoints
    • Built from Dockerfile.MCPO-Proxy (Rocky Linux 9.3, Python 3.11)
    • Provides Swagger documentation at /docs

Configuration Files

The Docker setup uses these configuration files:

  • docker-compose.yml: Multi-service orchestration
  • mcp-config.json.stdio: MCPO proxy configuration for stdio transport
  • mcp-config.json.http: MCPO proxy configuration for streamable-http transport
  • Dockerfile.MCPO-Proxy: MCPO proxy container with Rocky Linux 9.3 base
  • Dockerfile.MCP-Server: MCP server container with FastMCP runtime

Environment Variables

The MCP server container uses these environment variables:

  • FASTMCP_TYPE: Specifies the transport type for the MCP server.
  • FASTMCP_HOST: Sets the host address for the MCP server in HTTP mode.
  • FASTMCP_PORT=8080: Enables streamable-http transport mode
  • AIRFLOW_API_URL: Your Airflow API endpoint
  • AIRFLOW_API_USERNAME: Airflow username
  • AIRFLOW_API_PASSWORD: Airflow password
  • AIRFLOW_LOG_LEVEL: Values, DEBUG, INFO, WARNING, ERROR, CRITICAL

Service Access

  • Open WebUI: http://localhost:3002
  • MCP Server: http://localhost:18002
  • MCPO Proxy: http://localhost:8002

(NOTE) The configuration uses host.docker.internal:18002 for proper Docker networking when connecting from containers to host services.

Environment Variables Configuration

Required Environment Variables

These environment variables are essential for connecting to your Airflow instance:

  • AIRFLOW_API_URL: The base URL of your Airflow REST API endpoint

    • Example: http://localhost:8080/api/v1
    • Example: https://airflow.company.com/api/v1
  • AIRFLOW_API_USERNAME: Username for Airflow API authentication

    • Example: airflow
    • Example: admin
  • AIRFLOW_API_PASSWORD: Password for Airflow API authentication

    • Example: airflow
    • Example: your-secure-password

Transport Control Variables

  • FASTMCP_TYPE: Specifies the FastMCP transport type

    • Values: http, stdio
    • Default: Automatically determined based on FASTMCP_PORT setting
    • Example: http (for explicit HTTP transport)
  • FASTMCP_HOST: Defines the host address for HTTP transport

    • Default: 0.0.0.0 (listens on all interfaces)
    • Example: localhost (local access only)
    • Example: 0.0.0.0 (accessible from all network interfaces)
  • FASTMCP_PORT: Controls the transport mode selection

    • Default: 8080
    • Example: 18002 (for Docker container internal port)

Optional Configuration Variables

  • AIRFLOW_LOG_LEVEL: Controls logging verbosity
    • Values: DEBUG, INFO, WARNING, ERROR
    • Default: INFO

Configuration API Access

The Configuration Management tools require special Airflow settings:

  • AIRFLOW__WEBSERVER__EXPOSE_CONFIG: Enable configuration API access
    • Values: True, False, non-sensitive-only
    • Default: False (Configuration API disabled)
    • Required: Set to True or non-sensitive-only to use Configuration Management tools

Note: This setting must be configured in your Airflow instance, not in the MCP server environment.


Available MCP Tools

DAG Management

  • list_dags(limit=20, offset=0, fetch_all=False, id_contains=None, name_contains=None)
    Returns all DAGs registered in the Airflow cluster with pagination support.
    Output: dag_id, dag_display_name, is_active, is_paused, owners, tags, plus pagination info (total_entries, limit, offset, has_more_pages, next_offset, pagination_info)

    Pagination Examples:

    • First 20 DAGs: list_dags()
    • Next 20 DAGs: list_dags(limit=20, offset=20)
    • Large batch: list_dags(limit=100, offset=0)
    • All DAGs at once: list_dags(limit=1000)

    Filtering Examples:

    • id_contains="etl" → Only DAGs whose dag_id contains "etl"
    • name_contains="daily" → Only DAGs whose display_name contains "daily"
    • If both are specified, only DAGs matching both conditions are returned
  • running_dags
    Returns all currently running DAG runs.
    Output: dag_id, run_id, state, execution_date, start_date, end_date

  • failed_dags
    Returns all recently failed DAG runs.
    Output: dag_id, run_id, state, execution_date, start_date, end_date

  • trigger_dag(dag_id)
    Immediately triggers the specified DAG.
    Output: dag_id, run_id, state, execution_date, start_date, end_date

  • pause_dag(dag_id)
    Pauses the specified DAG (prevents scheduling new runs).
    Output: dag_id, is_paused

  • unpause_dag(dag_id)
    Unpauses the specified DAG (allows scheduling new runs).
    Output: dag_id, is_paused

Cluster Management & Health

  • get_health
    Get the health status of the Airflow webserver instance.
    Output: metadatabase, scheduler, overall health status

  • get_version
    Get version information of the Airflow instance.
    Output: version, git_version, build_date, api_version

Pool Management

  • list_pools(limit=20, offset=0)
    List all pools in the Airflow instance with pagination support.
    Output: pools, total_entries, limit, offset, pool details with slots usage

  • get_pool(pool_name)
    Get detailed information about a specific pool.
    Output: name, slots, occupied_slots, running_slots, queued_slots, open_slots, description, utilization_percentage

Variable Management

  • list_variables(limit=20, offset=0, order_by="key")
    List all variables stored in Airflow with pagination support.
    Output: variables, total_entries, limit, offset, variable details with keys, values, and descriptions

  • get_variable(variable_key)
    Get detailed information about a specific variable by its key.
    Output: key, value, description, is_encrypted

Connection Management

  • list_connections(limit=20, offset=0, fetch_all=False, order_by="connection_id", id_contains=None, conn_type_contains=None, description_contains=None)
    List all connections in the Airflow instance with pagination and advanced filtering support.
    Output: connections, total_entries, limit, offset, applied_filters, connection details with IDs, types, hosts, and schemas (passwords masked for security)

    Pagination Examples:

    • First 20 connections: list_connections()
    • Next 20 connections: list_connections(limit=20, offset=20)
    • Ordered by type: list_connections(order_by="conn_type")
    • Large batch: list_connections(limit=100)
    • All connections: list_connections(fetch_all=True)

    Filtering Examples:

    • id_contains="postgres" → Only connections whose ID contains "postgres"
    • conn_type_contains="http" → Only HTTP-based connections
    • description_contains="prod" → Only connections with "prod" in description
    • Multiple filters: list_connections(id_contains="db", conn_type_contains="postgres")
  • get_connection(connection_id)
    Get detailed information about a specific connection.
    Output: connection_id, conn_type, description, host, schema, login, port, is_encrypted, is_extra_encrypted, extra (password masked)

  • create_connection(connection_id, conn_type, description=None, host=None, login=None, password=None, db_schema=None, port=None, extra=None)
    Create a new connection in Airflow.
    Output: Created connection information (excluding sensitive data) with status: "created"

  • update_connection(connection_id, conn_type=None, description=None, host=None, login=None, password=None, db_schema=None, port=None, extra=None)
    Update an existing connection in Airflow.
    Output: Updated connection information (excluding sensitive data) with status: "updated"

  • delete_connection(connection_id)
    Delete a connection from Airflow.
    Output: connection_id, status: "deleted", confirmation message

Configuration Management

  • get_config()
    Get all configuration sections and options from the Airflow instance.
    Output: sections, total_sections, total_options, complete Airflow configuration with sensitive values masked

    Important: Requires expose_config = True in airflow.cfg [webserver] section. Even admin users will get 403 FORBIDDEN if this setting is disabled.

    Configuration Fix: If you get 403 errors:

    1. Edit /opt/airflow/airflow.cfg (or your Airflow config file)
    2. Find [webserver] section
    3. Change expose_config = False to expose_config = True
    4. Or use expose_config = non-sensitive-only for partial access
    5. Restart Airflow webserver service
    6. Alternative: Set environment variable AIRFLOW__WEBSERVER__EXPOSE_CONFIG=True
  • list_config_sections()
    List all available configuration sections with summary information.
    Output: sections, total_sections, total_options, section summaries with option counts

  • get_config_section(section)
    Get all configuration options for a specific section (filtered from /config endpoint).
    Output: section, options, total_options, option_names, section configuration details

    Common Sections:

    • core → Core Airflow settings (executor, dags_folder, etc.)
    • webserver → Web UI settings (port, workers, authentication, etc.)
    • scheduler → Scheduler settings (job_heartbeat_sec, max_threads, etc.)
    • database → Database connection settings
    • logging → Logging configuration
  • search_config_options(search_term)
    Search for configuration options by key name (searches within /config results).
    Output: matches, total_matches, sections_searched, filtered configuration options matching search criteria

    Search Examples:

    • search_term="database" → Find all database-related option keys
    • search_term="port" → Find all port-related configuration keys
    • search_term="timeout" → Find all timeout-related configurations

    API Limitation: Airflow 2.0.0 only supports /config endpoint. Individual section/option endpoints (/config/{section}, /config/{section}/{option}) are not available.

Task Instance Management

  • list_task_instances_all(dag_id=None, dag_run_id=None, execution_date_gte=None, execution_date_lte=None, start_date_gte=None, start_date_lte=None, end_date_gte=None, end_date_lte=None, duration_gte=None, duration_lte=None, state=None, pool=None, queue=None, limit=20, offset=0)
    Lists task instances across all DAGs or filtered by specific criteria with comprehensive filtering options.
    Output: task_instances, total_entries, limit, offset, applied_filters

  • get_task_instance_details(dag_id, dag_run_id, task_id)
    Retrieves detailed information about a specific task instance.
    Output: Comprehensive task instance details including execution info, state, timing, configuration, and metadata

  • list_task_instances_batch(dag_ids=None, dag_run_ids=None, task_ids=None, execution_date_gte=None, execution_date_lte=None, start_date_gte=None, start_date_lte=None, end_date_gte=None, end_date_lte=None, duration_gte=None, duration_lte=None, state=None, pool=None, queue=None)
    Lists task instances in batch with multiple filtering criteria for bulk operations.
    Output: task_instances, total_entries, applied_filters, batch processing results

  • get_task_instance_extra_links(dag_id, dag_run_id, task_id)
    Lists extra links for a specific task instance (e.g., monitoring dashboards, logs, external resources).
    Output: task_id, dag_id, dag_run_id, extra_links, total_links

  • get_task_instance_logs(dag_id, dag_run_id, task_id, try_number=1, full_content=False, token=None)
    Retrieves logs for a specific task instance and its try number with content and metadata.
    Output: task_id, dag_id, dag_run_id, try_number, content, continuation_token, metadata

XCom Management

  • list_xcom_entries(dag_id, dag_run_id, task_id, limit=20, offset=0)
    Lists XCom entries for a specific task instance.
    Output: dag_id, dag_run_id, task_id, xcom_entries, total_entries, limit, offset

  • get_xcom_entry(dag_id, dag_run_id, task_id, xcom_key, map_index=-1)
    Retrieves a specific XCom entry for a task instance.
    Output: dag_id, dag_run_id, task_id, xcom_key, map_index, key, value, timestamp, execution_date, run_id

DAG Analysis & Monitoring

  • get_dag(dag_id)
    Retrieves comprehensive details for a specific DAG.
    Output: dag_id, description, schedule_interval, owners, tags, start_date, next_dagrun, etc.

  • get_dags_detailed_batch(limit=100, offset=0, fetch_all=False, id_contains=None, name_contains=None, is_active=None, is_paused=None)
    Retrieves detailed information for multiple DAGs in batch with get_dag() level detail plus latest execution information. Combines list_dags() filtering with comprehensive DAG details and recent run data.
    Output: dags_detailed (list of detailed DAG objects with latest_dag_run info), total_processed, processing_stats, applied_filters, pagination_info

  • dag_graph(dag_id)
    Retrieves task dependency graph structure for a specific DAG.
    Output: dag_id, tasks, dependencies, task relationships

  • list_tasks(dag_id)
    Lists all tasks for a specific DAG.
    Output: dag_id, tasks, task configuration details

  • dag_code(dag_id)
    Retrieves the source code for a specific DAG.
    Output: dag_id, file_token, source_code

  • list_event_logs(dag_id=None, task_id=None, run_id=None, limit=20, offset=0)
    Lists event log entries with optional filtering.
    Output: event_logs, total_entries, limit, offset, has_more_pages, next_offset, pagination_info

    Optimized limit: Default is 20 for better performance while maintaining good coverage.

  • get_event_log(event_log_id)
    Retrieves a specific event log entry by ID.
    Output: event_log_id, when, event, dag_id, task_id, run_id, etc.

  • all_dag_event_summary()
    Retrieves event count summary for all DAGs.
    Output: dag_summaries, total_dags, total_events

    Improved limit: Uses limit=1000 for DAG retrieval to avoid missing DAGs in large environments.

  • list_import_errors(limit=20, offset=0)
    Lists import errors with optional filtering.
    Output: import_errors, total_entries, limit, offset, has_more_pages, next_offset, pagination_info

    Optimized limit: Default is 20 for better performance while maintaining good coverage.

  • get_import_error(import_error_id)
    Retrieves a specific import error by ID.
    Output: import_error_id, filename, stacktrace, timestamp

  • all_dag_import_summary()
    Retrieves import error summary for all DAGs.
    Output: import_summaries, total_errors, affected_files

  • dag_run_duration(dag_id, limit=50)
    Retrieves run duration statistics for a specific DAG.
    Output: dag_id, runs, duration analysis, success/failure stats

    Improved limit: Default increased from 10 to 50 for better statistical analysis.

  • dag_task_duration(dag_id, run_id=None)
    Retrieves task duration information for a specific DAG run.
    Output: dag_id, run_id, tasks, individual task performance

  • dag_calendar(dag_id, start_date=None, end_date=None, limit=20)
    Retrieves calendar/schedule information for a specific DAG.
    Output: dag_id, schedule_interval, runs, upcoming executions

    Configurable limit: Default is 20, can be increased up to 1000 for bulk analysis.


Prompt Template

The package exposes a tool get_prompt_template that returns either the entire template, a specific section, or just the headings. Three MCP prompts (prompt_template_full, prompt_template_headings, prompt_template_section) are also registered for discovery.

MCP Prompts

For easier discoverability in MCP clients (so prompts/list is not empty), the server now registers three prompts:

prompt_template_full – returns the full canonical template
prompt_template_headings – returns only the section headings
prompt_template_section – takes a section argument (number or keyword) and returns that section

You can still use the get_prompt_template tool for programmatic access or when you prefer tool invocation over prompt retrieval.

Single canonical English prompt template guides safe and efficient tool selection.

Files: • Packaged: src/mcp_airflow_api/prompt_template.md (distributed with PyPI)
• (Optional workspace root copy PROMPT_TEMPLATE.md may exist for editing; packaged copy is the one loaded at runtime.)

Retrieve dynamically via MCP tool: • get_prompt_template() – full template
get_prompt_template("tool map") – only the tool mapping section
get_prompt_template("3") – section 3 (tool map)
get_prompt_template(mode="headings") – list all section headings


Pagination Guide for Large Airflow Environments

Understanding DAG Pagination

The list_dags() function now supports pagination to handle large Airflow environments efficiently:

Default Behavior:

  • Returns first 100 DAGs by default
  • Includes pagination metadata in response

Pagination Response Structure:

{
  "dags": [...],
  "total_entries": 1500,
  "limit": 100,
  "offset": 0,
  "returned_count": 100,
  "has_more_pages": true,
  "next_offset": 100,
  "pagination_info": {
    "current_page": 1,
    "total_pages": 15,
    "remaining_count": 1400
  }
}

Pagination Strategies

🔍 Exploratory (Recommended for LLMs):

1. list_dags() → Check first 20 DAGs
2. Use has_more_pages to determine if more exist
3. list_dags(limit=20, offset=20) → Get next 20
4. Continue as needed

📊 Complete Analysis:

→ Automatically fetches ALL DAGs regardless of count

⚡ Quick Large Queries:

list_dags(limit=500)
→ Get up to 500 DAGs in one call

Best Practices

  • Small Airflow (< 50 DAGs): Use default list_dags()
  • Medium Airflow (50-500 DAGs): Use list_dags(limit=100) or list_dags(limit=200)
  • Memory-conscious: Use default limits (20) with manual pagination

Logging & Observability

  • Structured logs for all tool invocations and HTTP requests
  • Control log level via environment variable (AIRFLOW_LOG_LEVEL) or CLI flag (--log-level)
  • Supported levels: DEBUG, INFO, WARNING, ERROR, CRITICAL

More ScreenShoots

ScreenShot-001

ScreenShot-002

ScreenShot-003

ScreenShot-004

ScreenShot-005

ScreenShot-006

ScreenShot-007

ScreenShot-008

ScreenShot-009

ScreenShot-010


License

This project is licensed under the MIT License.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured