MCP AI Service Platform

MCP AI Service Platform

A powerful AI service platform that provides complete MCP tool calling capabilities and RAG knowledge base functionality, enabling users to connect to multiple MCP servers and perform intelligent document search.

Category
Visit Server

README

MCP生产级客户端文档

欢迎使用MCP生产级客户端!这是一个功能强大的AI服务平台,提供完整的MCP工具调用和RAG知识库功能。

📚 文档目录

新手入门

  1. 项目说明 - 了解项目的基本功能和特性
  2. 部署指南 - 从零开始部署项目
  3. API调用示例 - 学习如何使用API

高级配置

  1. AI模型配置 - 配置和更换不同的AI服务

🚀 快速开始

最简单的部署方式(Docker)

  1. 克隆项目

    git clone <项目地址>
    cd python-mcp-server-client
    
  2. 配置环境变量

    cp .env.example .env
    # 编辑.env文件,至少设置OPENAI_API_KEY
    
  3. 启动服务

    ./scripts/start.sh docker
    
  4. 访问服务

    • API文档:http://localhost:8000/docs
    • Grafana监控:http://localhost:3000

第一次API调用

# 健康检查
curl http://localhost:8000/health

# 发送查询
curl -X POST "http://localhost:8000/query" \
-H "Content-Type: application/json" \
-d '{"query": "今天天气如何?"}'

# 上传文档到知识库
curl -X POST "http://localhost:8000/rag/documents/upload" \
-F "file=@你的文档.pdf" \
-F "title=测试文档"

# 搜索知识库
curl -X POST "http://localhost:8000/rag/search" \
-H "Content-Type: application/json" \
-d '{"query": "搜索内容"}'

🔧 主要功能

MCP工具调用

  • 连接多个MCP服务器
  • 智能工具路由和负载均衡
  • 实时状态监控

RAG知识库

  • 支持多种文档格式(PDF、Word、Markdown、TXT)
  • 智能文档分块和向量化
  • 高性能语义搜索

监控和运维

  • Prometheus指标收集
  • Grafana可视化面板
  • 完整的日志记录
  • 健康检查端点

🛠️ 系统要求

  • Python: 3.11+
  • 内存: 4GB以上(推荐8GB)
  • 存储: 20GB可用空间
  • 数据库: PostgreSQL + pgvector
  • 缓存: Redis

📖 详细文档

1. 项目说明

了解项目的核心功能、技术架构和应用场景。适合想要全面了解项目的用户。

查看项目说明 →

2. 部署指南

详细的部署步骤,包括本地开发环境和生产环境部署。支持Docker和手动部署两种方式。

查看部署指南 →

3. API调用示例

完整的API使用教程,包括Python和JavaScript客户端示例,以及错误处理和性能优化建议。

查看API调用示例 →

4. AI模型配置

如何配置和更换不同的AI服务,支持OpenAI、国产AI服务和本地模型。

查看AI模型配置 →

🤝 支持和反馈

如果您在使用过程中遇到问题或有任何建议,请:

  1. 查看相关文档是否有解决方案
  2. 检查常见问题
  3. 提交Issue或联系技术支持

📄 许可证

本项目采用MIT许可证,详情请查看LICENSE文件。


最后更新:2025年6月

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured