MCP Aggregator Server
Provides a unified MCP interface that proxies requests to multiple backend servers including memory/knowledge graph and vector database services. Enables seamless access to distributed MCP tools through a single endpoint with automatic routing, health monitoring, and retry logic.
README
MCP Aggregator Server
Unified MCP interface that proxies requests to multiple backend MCP servers.
Architecture
┌─────────────────────────────────────────────────────────────┐
│ MCP Client │
│ (Claude, IDE, etc.) │
└────────────────────┬────────────────────────────────────────┘
│
│ Connect to single endpoint
▼
┌─────────────────────────────────────────────────────────────┐
│ Aggregator MCP Server (Port 8003) │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ Unified MCP Interface │ │
│ │ - 19 tools total (2 health + 10 memory + 7 vector) │ │
│ │ - Handles routing internally │ │
│ │ - Single /mcp/sse & /mcp/messages endpoint │ │
│ └──────────────────────────────────────────────────────┘ │
└────────┬──────────────────────────────────────────────────┬──┘
│ │
│ HTTP Proxy │ HTTP Proxy
▼ ▼
┌──────────────────────┐ ┌──────────────────────┐
│ ZepAI Memory Server │ │ LTM Vector Server │
│ (Port 8002) │ │ (Port 8000) │
│ │ │ │
│ - Knowledge Graph │ │ - Vector Database │
│ - Conversation Memory│ │ - Code Indexing │
│ - 10 tools │ │ - 7 tools │
└──────────────────────┘ └──────────────────────┘
Features
- Unified Interface: Single MCP endpoint for all connected servers
- Transparent Proxying: Automatically routes requests to appropriate backend servers
- Health Monitoring: Built-in health checks for all connected servers
- Retry Logic: Automatic retry with exponential backoff for failed requests
- Error Handling: Comprehensive error handling and logging
- Extensible: Easy to add new backend servers
Installation
- Install dependencies:
pip install -r requirements.txt
- Configure environment (edit
.env):
# Aggregator Server
AGGREGATOR_HOST=0.0.0.0
AGGREGATOR_PORT=8003
# Memory Server (FastMCP Server)
MEMORY_SERVER_URL=http://localhost:8002
MEMORY_SERVER_TIMEOUT=30
# Graph Server (for future use)
GRAPH_SERVER_URL=http://localhost:8000
GRAPH_SERVER_TIMEOUT=30
Running
Start all servers in order:
Terminal 1 - LTM Vector Server (Port 8000):
cd LTM
python mcp_server/server_streamable_http.py
Terminal 2 - ZepAI FastMCP Server (Port 8002):
cd ZepAI/fastmcp_server
python server_http.py
Note: This automatically loads the Memory Layer and exposes both FastAPI + MCP on port 8002
Terminal 3 - MCP Aggregator (Port 8003):
cd mcp-aggregator
python aggregator_server.py
See START_SERVERS.md for detailed startup guide.
Available Tools
Health & Status
health_check()- Check health of all connected serversget_server_info()- Get information about connected servers
Memory Server Tools (Port 8002)
Search
memory_search(query, project_id, limit, use_llm_classification)- Search knowledge graphmemory_search_code(query, project_id, limit)- Search code memories
Ingest
memory_ingest_text(text, project_id, metadata)- Ingest plain textmemory_ingest_code(code, language, project_id, metadata)- Ingest codememory_ingest_json(data, project_id, metadata)- Ingest JSON datamemory_ingest_conversation(conversation, project_id)- Ingest conversation
Admin
memory_get_stats(project_id)- Get project statisticsmemory_get_cache_stats()- Get cache statistics
LTM Vector Server Tools (Port 8000)
Repository Processing
ltm_process_repo(repo_path)- Process repository for vector indexing
Vector Search
ltm_query_vector(query, top_k)- Query vector database for semantic code searchltm_search_file(filepath)- Search for specific file in vector database
File Management
ltm_add_file(filepath)- Add file to vector databaseltm_delete_by_filepath(filepath)- Delete file from vector databaseltm_delete_by_uuids(uuids)- Delete vectors by UUIDs
Code Analysis
ltm_chunk_file(file_path)- Chunk file using AST-based chunking
Testing
1. Check Server Health
curl http://localhost:8003/mcp/sse
2. Access OpenAPI Docs
http://localhost:8003/docs
3. Test a Tool via MCP
# Using MCP client
mcp-client http://localhost:8003/mcp health_check
Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
AGGREGATOR_HOST |
0.0.0.0 |
Aggregator server host |
AGGREGATOR_PORT |
8003 |
Aggregator server port |
MEMORY_SERVER_URL |
http://localhost:8002 |
Memory server URL |
MEMORY_SERVER_TIMEOUT |
30 |
Memory server timeout (seconds) |
GRAPH_SERVER_URL |
http://localhost:8000 |
Graph server URL |
GRAPH_SERVER_TIMEOUT |
30 |
Graph server timeout (seconds) |
LOG_LEVEL |
INFO |
Logging level |
MAX_RETRIES |
3 |
Max retries for failed requests |
RETRY_DELAY |
1 |
Delay between retries (seconds) |
HEALTH_CHECK_INTERVAL |
30 |
Health check interval (seconds) |
Adding New Backend Servers
To add a new backend server (e.g., Graph Server):
- Update
config.py:
GRAPH_SERVER_URL = os.getenv("GRAPH_SERVER_URL", "http://localhost:8000")
GRAPH_SERVER_TIMEOUT = int(os.getenv("GRAPH_SERVER_TIMEOUT", "30"))
- Update
mcp_client.py:
class AggregatorClients:
def __init__(self):
# ... existing clients ...
self.graph_client = MCPServerClient(
"Graph Server",
config.GRAPH_SERVER_URL,
config.GRAPH_SERVER_TIMEOUT
)
- Add tools in
aggregator_server.py:
@mcp.tool()
async def graph_query(cypher: str) -> Dict[str, Any]:
"""Query Neo4j graph database"""
clients = await get_clients()
return await clients.graph_client.proxy_request(
"POST",
"/query",
json_data={"cypher": cypher},
retries=config.MAX_RETRIES
)
Troubleshooting
Connection Refused
- Ensure all backend servers are running
- Check URLs in
.envfile - Verify ports are not blocked by firewall
Timeout Errors
- Increase
MEMORY_SERVER_TIMEOUTorGRAPH_SERVER_TIMEOUTin.env - Check backend server performance
- Verify network connectivity
Health Check Failing
- Run
health_check()tool to diagnose - Check backend server logs
- Verify backend servers are responding
Development
Project Structure
mcp_aggregator/
├── aggregator_server.py # Main MCP server
├── config.py # Configuration management
├── mcp_client.py # HTTP clients for backend servers
├── requirements.txt # Python dependencies
├── .env # Environment variables
├── __init__.py # Package initialization
└── README.md # This file
Adding Logging
import logging
logger = logging.getLogger(__name__)
logger.info("Message")
logger.error("Error")
Future Enhancements
- [ ] Add Graph/Vector DB server integration
- [ ] Implement caching layer
- [ ] Add request rate limiting
- [ ] Implement server load balancing
- [ ] Add metrics/monitoring
- [ ] Support for server discovery
- [ ] WebSocket support for real-time updates
License
Same as parent project (Innocody)
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.