MCP AgentRun Server

MCP AgentRun Server

Enables safe Python code execution in isolated Docker containers through the AgentRun framework. Provides automatic container lifecycle management and comprehensive error handling for secure and reproducible code execution.

Category
Visit Server

README

MCP AgentRun Server

An MCP (Model Context Protocol) server that provides Python code execution capabilities using AgentRun. This server can execute Python code in isolated Docker containers for safe and reproducible code execution.

Features

  • Safe Code Execution: Execute Python code in isolated Docker containers
  • Container Management: Automatic container lifecycle management with docker-compose
  • Environment Isolation: Each execution runs in a clean, isolated environment
  • Error Handling: Comprehensive error handling and logging
  • Easy Integration: Simple MCP interface for AI assistants and tools

Installation

Prerequisites

  • Python 3.13 or higher
  • Docker and Docker Compose
  • UV package manager (recommended)

Setup

  1. Clone the repository:
git clone <repository-url>
cd mcp-agentrun
  1. Run the setup script:
chmod +x setup.sh
./setup.sh

Usage

From Cursor

Go to Cursor Settings > Tools and Integrations > [New MCP Server] In the mcp.json file add the following:

{
  "mcpServers": {
    "python-code-executor": {
      "command": "/path/to/mcp-agentrun/.venv/bin/python",
      "args": [
        "/path/to/mcp-agentrun/src/server.py"
      ],
      "env": {
        "PYTHONPATH": "/path/to/mcp-agentrun",
        "AGENTRUN_API_DIR": "/path/to/mcp-agentrun/agentrun/agentrun-api",
        "PYTHONUNBUFFERED": "1"
      }
    }
  }
}

Running the Server

python src/server.py

Available Tools

Execute Python Code

Execute Python code in a container:

result = execute_code(
    python_code="print('Hello, World!')\nprint(2 + 2)"
)

Returns the output of the code execution as a string.

Example Usage

See tests/test_build_container.py for a complete example:

import os
import subprocess
import dotenv
from agentrun import AgentRun

# Setup environment
rootdir = subprocess.run(["git", "rev-parse", "--show-toplevel"], 
                        capture_output=True, text=True).stdout.strip()
agentrun_api_dir = os.path.join(rootdir, "agentrun", "agentrun-api")

dotenv.load_dotenv(os.path.join(agentrun_api_dir, ".env.dev"))
container_name = os.getenv("CONTAINER_NAME")

# Execute code
with ComposeService(agentrun_api_dir):
    runner = AgentRun(container_name=container_name)
    code_from_llm = "print(1+2)"
    result = runner.execute_code_in_container(code_from_llm)
    print(result)  # Output: 3

Project Structure

mcp-agentrun/
├── agentrun/                 # AgentRun submodule
├── src/
│   ├── __init__.py
│   └── server.py            # MCP server implementation
├── tests/
│   ├── test_build_container.py  # Container testing
│   ├── test.py              # Unit tests
│   ├── test_integration.py  # Integration tests
│   └── dev.ipynb            # Development notebook
├── pyproject.toml           # Project configuration
├── pytest.ini              # Pytest configuration
├── run_tests.py             # Test runner script
├── setup.sh                 # Setup script
└── README.md               # This file

Configuration

The server requires a .env.dev file in the agentrun/agentrun-api/ directory with the following variables:

CONTAINER_NAME=your-container-name

Testing

Dependencies

  • agentrun>=0.2.5: Python code execution in containers
  • docker>=7.1.0: Docker API client
  • fastmcp>=2.10.5: MCP server framework
  • pydantic>=2.11.7: Data validation
  • dotenv>=0.9.9: Environment variable management
  • tenacity>=9.1.2: Retry logic

Development

Adding New Features

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Running in Development Mode

# Install in development mode
uv pip install -e .

# Run the server
python src/server.py

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Related Projects

  • AgentRun: Python code execution in containers
  • FastMCP: Fast MCP server framework

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured