MCP Agent - AI Expense Tracker

MCP Agent - AI Expense Tracker

Enables AI agents to manage personal expenses through natural language conversations. Supports adding, searching, and analyzing transactions with automatic categorization and financial insights.

Category
Visit Server

README

MCP Agent - AI Expense Tracker

License: MIT Python 3.11+ GitHub stars Presentation

A practical demonstration of AI Agent implementation with custom MCP server.

This project showcases how to build intelligent AI agents using the Model Context Protocol (MCP). Through a real-world expense tracking application, you'll see how AI agents can interact with tools, databases, and APIs to perform complex tasks through natural conversation.

🎯 What This Demonstrates

  • Custom MCP Server: Build your own MCP server using FastAPI
  • AI Agent Integration: Connect AI agents to tools via MCP protocol
  • Real-world Application: Practical expense tracking use case
  • Natural Language Interface: Chat with AI to manage your data
  • Tool Discovery: AI automatically discovers and uses available tools

🏗️ Architecture

graph TB
    subgraph "Backend"
        API[API Server<br/>FastAPI + SQLite<br/>Port: 8002]
        MCP[MCP Server<br/>FastAPI-MCP<br/>Port: 9002]
    end

    subgraph "AI Layer"
        Agent[AI Agent<br/>Agno Framework<br/>Port: 7777]
        LLM[LLM]
    end

    subgraph "Client Layer"
        UI[Web UI<br/>Next.js + React<br/>Port: 3000]
        Telegram[Telegram Bot<br/>Python Telegram Bot]
        AnyClient[Any MCP Client]
    end

    subgraph "End Users"
        User1[User]
        User2[User]
        User3[User]
    end

    API -->|Exposes REST API| MCP
    MCP -->|MCP Protocol| Agent
    MCP -.->|MCP Protocol| AnyClient
    Agent -->|API Calls| LLM
    Agent -->|Serves| UI
    Agent -->|Serves| Telegram
    UI -->|Interacts| User1
    Telegram -->|Interacts| User2
    AnyClient -.->|Interacts| User3

    style API fill:#0066CC,color:#fff
    style MCP fill:#00AA66,color:#fff
    style Agent fill:#FF6600,color:#fff
    style LLM fill:#8B5CF6,color:#fff
    style UI fill:#06B6D4,color:#fff
    style Telegram fill:#06B6D4,color:#fff

📖 For detailed architecture documentation, request flows, and deployment options, see ARCHITECTURE.md

🚀 Features

  • AI-Powered Agent: Natural language expense tracking using OpenAI GPT-4
  • SQLite Database: Persistent storage for all transactions
  • Auto-Initialization: Automatic database setup with seed data
  • MCP Integration: Extensible tool system for AI agents
  • REST API: Full CRUD operations for expense management
  • Multiple Clients: Web UI, Telegram bot, and direct agent interface
  • Smart Categorization: Automatic expense categorization and insights
  • Currency-Agnostic: Clean numerical formatting without currency symbols

📁 Project Structure

MCPAgent/
├── .env.example       # Environment variables template
├── .env               # Your configuration (create from .env.example)
├── agent/             # AI Agent with Agno framework
│   ├── agent.py       # Main agent with system prompts
│   └── agno.db        # Agent's SQLite database
├── server/            # FastAPI backend with MCP server
│   ├── main.py        # API routes and endpoints
│   ├── store.py       # SQLite data store
│   ├── models.py      # Pydantic data models
│   ├── config.py      # Configuration settings
│   ├── mcp_server.py  # MCP protocol server
│   ├── start.py       # Server initialization & startup
│   └── expenses.db    # Transactions database
└── client/
    ├── agent-ui/      # Next.js web interface
    └── telegram-bot/  # Telegram bot client

🏃 Quick Start

1. Install Dependencies

# Install Python dependencies
pip install -r server/requirements.txt
pip install agno openai python-dotenv

2. Set Environment Variables

# Copy example and add your API key
cp .env.example .env
# Edit .env and add your OPENAI_API_KEY

3. Initialize and Start Servers

cd server

# Check dependencies and initialize database with seed data
python start.py

# Start MCP server (in one terminal)
python start.py --mcp

# Start API server (in another terminal)
python start.py --api

4. Run the AI Agent

cd agent
python agent.py

Access the agent at: http://localhost:7777

💬 Usage Examples

Chat with the AI agent:

  • "Add a 50 grocery expense"
  • "I spent 75 on dinner last night"
  • "How much did I spend on food this month?"
  • "Show me my financial summary"
  • "What's my biggest expense category?"
  • "Add income of 5000 from salary"

🛠️ Tech Stack

  • Protocol: Model Context Protocol (MCP) - Custom server implementation
  • Agent Framework: Agno
  • AI Model: OpenAI GPT-4
  • MCP Server: FastAPI-MCP (converts REST API to MCP tools)
  • Backend: FastAPI + SQLite
  • Frontend: Next.js + React
  • Bot: Python Telegram Bot

🔌 How MCP Works Here

  1. FastAPI Backend (server/main.py) - Standard REST API with CRUD operations
  2. MCP Server (server/mcp_server.py) - Wraps the API and exposes it as MCP tools
  3. AI Agent (agent/agent.py) - Connects to MCP server and automatically discovers tools
  4. Natural Language - User chats with agent, agent uses tools to complete tasks
User Input → AI Agent → MCP Server → FastAPI → SQLite
              ↓
         Tool Selection & Execution
              ↓
         Natural Language Response

📊 API Endpoints

  • GET /transactions - List all transactions
  • POST /transactions - Create new transaction
  • PUT /transactions/{id} - Update transaction
  • DELETE /transactions/{id} - Delete transaction
  • GET /transactions/search?q= - Search transactions
  • GET /summary - Financial summary
  • GET /summary/categories - Category breakdown
  • GET /health - Health check

Full API docs: http://localhost:8002/docs

🎯 Server Commands

The start.py script manages server initialization and startup:

# Check dependencies and initialize database
python start.py

# Start MCP server only
python start.py --mcp

# Start API server only  
python start.py --api

# Custom ports
python start.py --api --port 8000
python start.py --mcp --port 9000

What start.py does:

  • ✅ Checks all required dependencies
  • ✅ Verifies environment variables
  • ✅ Initializes SQLite database
  • ✅ Seeds database with sample transactions (first run only)
  • ✅ Starts requested server(s)

🤖 Agent Capabilities

The AI agent can:

  • Create, read, update, and delete expenses
  • Search transactions by keyword
  • Generate financial summaries and insights
  • Analyze spending patterns by category
  • Provide budgeting recommendations
  • Filter transactions by date, type, or category

🔧 Configuration

Environment Variables (.env)

OPENAI_API_KEY=your_key_here    # Required for AI agent
HOST=localhost                  # Server host
PORT=8002                       # API server port
MCP_HOST=localhost              # MCP server host
MCP_PORT=9002                   # MCP server port

Server Configuration (server/config.py)

  • Server host/port settings
  • Database path
  • MCP server configuration

Agent Configuration (agent/agent.py)

  • AI model selection (default: gpt-4.1)
  • System prompt customization
  • Agent behavior settings
  • Database location

🔍 Troubleshooting

Dependencies missing?

pip install -r server/requirements.txt
pip install agno openai python-dotenv

Database not initialized?

cd server && python start.py

Port already in use?

python start.py --api --port 8003
python start.py --mcp --port 9003

Agent can't connect to MCP?

📊 Presentation

This project includes a presentation about practical AI agent implementation:

🌐 Live Demo

View Slides Online →

📁 Local Files

Open the slides to learn more about AI agents and MCP protocol.

📚 Resources

This project is built with and inspired by amazing open-source projects:

Special thanks to these projects and their maintainers for making AI agent development accessible and enjoyable! 🙏

📝 License

MIT


Built with ❤️ using AI agents and MCP

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured