MCP (Model Context Protocol) Server

MCP (Model Context Protocol) Server

VajraM-dev

Research & Data
Visit Server

README

MCP (Model Context Protocol) Server

Project Structure

├── client.py             # Client-side interaction script
├── server.py             # Main MCP server implementation
├── pg_connect.py         # PostgreSQL database connection
├── lm_config.py          # Language model configuration
│
├── .env.example          # Example environment configuration
├── .env.dev              # Development environment configuration
├── requirements.txt      # Project dependencies
└── .gitignore            # Git ignore file

Prerequisites

  • Python 3.10+
  • PostgreSQL
  • API access to AI providers (Anthropic, Google)

Installation

1. Clone the Repository

git https://github.com/VajraM-dev/Postgres-MCP-Server-With-SSE-Transport.git

2. Create Virtual Environment

python -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`

3. Install Dependencies

pip install -r requirements.txt

4. Configure Environment

  1. Copy .env.example to .env.dev
  2. Fill in the required configuration:
cp .env.example .env.dev
nano .env.dev  # or use your preferred text editor

Configuration Parameters

  • POSTGRES_USERNAME: PostgreSQL database username
  • POSTGRES_PASSWORD: PostgreSQL database password
  • POSTGRES_DB_NAME: Database name
  • POSTGRES_HOST: Database host
  • POSTGRES_PORT: Database port
  • MCP_NAME: Server name
  • MCP_HOST: Server host
  • MCP_PORT: Server port
  • TRANSPORT: Communication transport (sse/stdio)
  • ANTHROPIC_API_KEY: Anthropic API key
  • GOOGLE_API_KEY: Google API key
  • USE_PROVIDER: Default AI provider

Running the Server

Development Mode

python server.py

Client Interaction

python client.py

Key Features

  • 🔒 Secure configuration management
  • 🗃️ PostgreSQL database integration
  • 🤖 Multi-provider AI model support
  • 📡 Flexible communication transport
  • 🛡️ Extensible tool registration

Supported AI Providers

  • Anthropic (Claude models)
  • Google (Gemini models)

Tools and Endpoints

Available Tools

  • list_tables(): Retrieve database tables
  • Custom tools can be easily added via decorators

Endpoints

  • /sse: Server-Sent Events endpoint
  • Customizable routing and tool registration

Extending the Framework

Adding New Tools

@app.tool()
def custom_tool():
    """Custom tool implementation"""
    # Your tool logic here

Configuring AI Providers

Modify lm_config.py to add or configure new AI providers.

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python