Master Brain MCP Hub

Master Brain MCP Hub

A central knowledge hub that connects AI tools to a unified 'Master Brain' with automated memory capabilities. It utilizes intelligent analysis to automatically capture and store key decisions, fixes, and learnings across various development environments.

Category
Visit Server

README

Master Brain MCP Hub

Zentraler MCP Server der alle AI-Tools mit dem Master Brain verbindet. Inklusive Auto-Memory: Wichtige Interaktionen werden automatisch gespeichert.

Version: 1.0.0 Status: In Development

Features

  • Zentrales Brain - Ein Wissens-Hub für alle AI-Tools
  • Auto-Memory - Entscheidungen, Fixes, Learnings werden automatisch gespeichert
  • Multi-Tool Support - Claude Code, Codex, Cursor, API
  • Haiku-Analyse - Intelligente Filterung was gespeichert wird
  • 24/7 Betrieb - PM2 managed, läuft auf dem Server

Architektur

┌─────────────────────────────────────────────────────────────────────┐
│                     MCP MASTER BRAIN HUB                            │
│  ┌───────────────────────────────────────────────────────────────┐  │
│  │                    AUTO-MEMORY MIDDLEWARE                     │  │
│  │   Request ──▶ [Haiku Analyse] ──▶ Response                   │  │
│  │                      │                                        │  │
│  │               Wichtig? ──▶ [SPEICHERN]                       │  │
│  └───────────────────────────────────────────────────────────────┘  │
│                              │                                      │
│                              ▼                                      │
│  ┌───────────────────────────────────────────────────────────────┐  │
│  │                      MASTER BRAIN                             │  │
│  │              (Vektor-DB, Embeddings, Wissen)                  │  │
│  └───────────────────────────────────────────────────────────────┘  │
└─────────────────────────────────────────────────────────────────────┘
         ▲              ▲              ▲              ▲
    Claude Code    Claude Code      Codex         Cursor
       (Mac)        (Server)

Quick Start

1. Installation

git clone https://github.com/Activi-AI/Master-Brain-MCP-Hub.git
cd Master-Brain-MCP-Hub
npm install
cp .env.example .env
# .env anpassen
npm run build

2. In Claude Code einbinden

// ~/.claude/mcp_servers.json
{
  "master-brain": {
    "type": "stdio",
    "command": "node",
    "args": ["/path/to/master-brain-mcp/dist/index.js"],
    "env": {
      "BRAIN_API_URL": "http://178.156.178.70:3001",
      "ANTHROPIC_API_KEY": "sk-ant-xxxxx"
    }
  }
}

3. Oder Remote via SSH

{
  "master-brain": {
    "type": "stdio",
    "command": "ssh",
    "args": ["root@178.156.178.70", "node", "/root/master-brain-mcp/dist/index.js"]
  }
}

MCP Tools

Tool Beschreibung
brain_search Durchsucht das Brain (semantic/keyword/hybrid)
brain_save Speichert Wissen manuell
brain_stats Zeigt Brain-Statistiken
brain_recent Zeigt letzte Einträge
brain_health Prüft Brain-Verbindung
auto_memory_status Status der Auto-Memory Middleware
auto_memory_config Konfiguriert Auto-Memory

Auto-Memory

Das System analysiert automatisch alle Interaktionen und speichert wichtige Inhalte:

Typ Wird erkannt bei
decision "Wir haben uns für X entschieden"
fix "Der Bug war weil..."
learning "Ich habe gelernt dass..."
pattern "So macht man X in diesem Projekt"
preference "User will immer Y"
config "Die Konfiguration ist Z"
error "Fehler: ABC"

Konfiguration

# .env
AUTO_MEMORY_ENABLED=true
AUTO_MEMORY_MIN_CONFIDENCE=0.7  # Nur speichern wenn Confidence >= 70%

Deployment

PM2 (empfohlen)

npm run build
pm2 start ecosystem.config.cjs
pm2 save

Logs

pm2 logs master-brain-mcp

Projekt-Struktur

/
├── README.md                    # Diese Datei
├── MASTER_RUNBOOK.md           # Step-by-Step Entwicklungs-Runbook
├── PROJECT_STATE.md            # Single Source of Truth
├── capabilities.yml            # Capability-Definitionen mit Test-Regeln
├── PRODUCTION_CHECKLIST.md     # Pflicht vor Go-Live
│
├── CONTRACTS/
│   ├── api_contract.md         # API Endpoints (Pflicht)
│   └── data_contract.md        # DB Schema (Pflicht)
│
├── docs/
│   ├── PROJECT_BRIEF.md        # Projekt-Übersicht
│   ├── ARCHITECTURE.md         # System-Architektur
│   ├── TEST_PLAN.md            # Testplan (verweist auf capabilities.yml)
│   └── CONTRACT_VERIFICATION.md # FE ↔ BE ↔ DB Prüfung (Step 7.5)
│
├── ops/
│   ├── POLICY.md               # Projekt-Policies
│   ├── DECISIONS.md            # Architektur-Entscheidungen
│   ├── RISKS.md                # Identifizierte Risiken
│   ├── OPEN_QUESTIONS.md       # Offene Fragen
│   └── RUNBOOK_SUPERVISOR.md   # Supervisor-Checkliste
│
├── agents/                     # AI Agent Definitionen
│   └── {agent_name}/
│       ├── flow.yaml
│       └── playbook.md
│
├── eval/
│   ├── scorecard.yaml          # Bewertungskriterien
│   └── regression_tests.yaml   # Regression Tests
│
├── schemas/
│   └── *.json                  # JSON Schemas für Outputs
│
├── scripts/
│   └── ci/                     # CI/CD Scripts
│
├── integrations/               # Externe Integrationen
│   └── README.md               # Verweis auf zentrale Registry
│
├── templates/
│   └── TASK_TICKET.md          # Task-Vorlage
│
└── .github/
    ├── workflows/
    │   ├── ci.yml
    │   └── quality-gate.yml
    ├── pull_request_template.md
    └── ISSUE_TEMPLATE/

Kernkonzepte

1. Contracts-First

API und DB werden ZUERST definiert. Keine Änderung ohne explizite Genehmigung.

2. Capabilities mit Test-Pflichten

Jede Funktion wird in capabilities.yml registriert mit zugehörigen Test-Anforderungen.

3. Production-Pflichten

Vor Go-Live MUSS PRODUCTION_CHECKLIST.md komplett abgehakt sein.

4. Single Source of Truth

PROJECT_STATE.md ist die einzige Wahrheit über den Projekt-Status.

Regeln

  • Contracts sind Gesetz - Keine stillen Änderungen
  • 1 Step pro Antwort - Bei AI-Coding
  • Tests für alles - Keine Funktion ohne Test
  • Evidence required - Keine Behauptung ohne Beweis

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured