Markdown RAG
A Retrieval Augmented Generation system that enables AI assistants to perform semantic searches and manage document indices for markdown files. It supports PostgreSQL with pgvector and integrates both Google Gemini and Ollama for intelligent embedding generation.
README
Markdown RAG
A Retrieval Augmented Generation (RAG) system for markdown documentation with intelligent rate limiting and MCP server integration.
Features
- Semantic Search: Vector-based similarity search using Google Gemini or Ollama embeddings
- Markdown-Aware Chunking: Intelligent document splitting that preserves semantic boundaries
- Rate Limiting: Sophisticated sliding window algorithm with token counting and batch optimization
- MCP Server: Model Context Protocol server for AI assistant integration
- PostgreSQL Vector Store: Scalable storage using pgvector extension
- Incremental Updates: Smart deduplication prevents reprocessing existing documents
- Production Ready: Type-safe configuration, comprehensive logging, and error handling
Installation
git clone https://github.com/yourusername/markdown-rag.git
Prerequisites
- Python 3.11+
- PostgreSQL 12+ with pgvector extension installed
- Google Gemini API key (if using Google embeddings)
- Ollama (if using local embeddings)
- MCP-compatible client (Claude Desktop, Cline, etc.)
Quick Start
1. (Optional) Set Up PostgreSQL
createdb embeddings
If you do not create a database, the tool will create one for you. The pgvector extension will be automatically enabled when you first run the tool.
2. Ingest Documents
cd markdown-rag
# Use Google Gemini
uv run markdown-rag /path/to/docs --command ingest --engine google
# Or use Ollama
uv run markdown-rag /path/to/docs --command ingest --engine ollama
Required environment variables (create .env or export):
POSTGRES_PASSWORD=your_password
GOOGLE_API_KEY=your_gemini_api_key # Only if using Google engine
3. Configure MCP Client
Add to your MCP client configuration (e.g., claude_desktop_config.json). The client will automatically start the server.
Minimal configuration:
{
"mcpServers": {
"markdown-rag": {
"command": "uv",
"args": [
"run",
"--directory"
"/absolute/path/to/markdown-rag",
"markdown-rag",
"/absolute/path/to/docs",
"--command",
"mcp"
],
"env": {
"POSTGRES_PASSWORD": "your_password",
"GOOGLE_API_KEY": "your_api_key"
}
}
}
}
Full configuration:
{
"mcpServers": {
"markdown-rag": {
"command": "uv",
"args": [
"run",
"--directory"
"/absolute/path/to/markdown-rag",
"markdown-rag",
"/absolute/path/to/docs",
"--command",
"mcp"
],
"env": {
"POSTGRES_USER": "postgres_username",
"POSTGRES_PASSWORD": "your_password",
"DISABLED_TOOLS": "delete_document,update_document",
"CHUNK_OVERLAP": 50,
# Google Configuration
"GOOGLE_API_KEY": "your_api_key",
"GOOGLE_MODEL": "models/gemini-embedding-001",
"RATE_LIMIT_REQUESTS_PER_DAY": "1000",
"RATE_LIMIT_REQUESTS_PER_MINUTE": "100",
# Ollama Configuration
"OLLAMA_HOST": "http://localhost:11434",
"OLLAMA_MODEL": "mxbai-embed-large",
}
}
}
}
4. Query via MCP
The server exposes several tools:
query
- Semantic search over documentation
- Arguments:
query(string),num_results(integer, optional, default: 4)
list_documents
- List all ingested documents
- Arguments: none
delete_document
- Remove a document from the index
- Arguments:
filename(string)
update_document
- Re-ingest a specific document
- Arguments:
filename(string)
refresh_index
- Scan directory and ingest new/modified files
- Arguments: none
To disable tools (e.g., in production), set DISABLED_TOOLS environment variable:
DISABLED_TOOLS=delete_document,update_document,refresh_index
Configuration
Environment Variables
| Variable | Default | Required | Description |
|---|---|---|---|
POSTGRES_USER |
postgres |
No | PostgreSQL username |
POSTGRES_PASSWORD |
- | Yes | PostgreSQL password |
POSTGRES_HOST |
localhost |
No | PostgreSQL host |
POSTGRES_PORT |
5432 |
No | PostgreSQL port |
POSTGRES_DB |
[engine]_embeddings |
No | Database name |
GOOGLE_API_KEY |
- | Yes* | Google Gemini API key (*if using Google) |
GOOGLE_MODEL |
models/gemini... |
No | Google embedding model |
OLLAMA_HOST |
http://localhost... |
No | Ollama host URL |
OLLAMA_MODEL |
mxbai-embed-large |
No | Ollama embedding model |
RATE_LIMIT_REQUESTS_PER_MINUTE |
100 |
No | Max API requests per minute |
RATE_LIMIT_REQUESTS_PER_DAY |
1000 |
No | Max API requests per day |
DISABLED_TOOLS |
- | No | Comma-separated list of tools to disable |
Command Line Options
uv run markdown-rag <directory> [OPTIONS]
Arguments:
<directory>: Path to markdown files directory (required)
Options:
-c, --command {ingest|mcp}: Operation mode (default:mcp)ingest: Process and store documentsmcp: Start MCP server for queries
-e, --engine {google|ollama}: Embedding engine (default:google)-l, --level {debug|info|warning|error}: Logging level (default:warning)
Examples:
uv run markdown-rag ./docs --command ingest --level info --engine ollama
uv run markdown-rag /var/docs -c ingest -l debug -e google
Architecture
System Components
The following diagram shows how the system components interact:
graph TD
A[MCP Client<br/>Claude, ChatGPT, etc.] --> B[FastMCP Server<br/>Tool: query]
B --> C[MarkdownRAG]
C --> D[Text Splitters]
C --> E[Rate Limited Embeddings]
E --> F[Google Gemini<br/>Embeddings API]
C --> G[PostgreSQL<br/>+ pgvector]
Rate Limiting Strategy
The system implements a dual-window sliding algorithm:
- Request Limits: Tracks requests per minute and per day
- Token Limits: Counts tokens before API calls
- Batch Optimization: Calculates maximum safe batch sizes
- Smart Waiting: Minimal delays with automatic retry
See Architecture Documentation for detailed diagrams.
Development
Setup Development Environment
git clone https://github.com/yourusername/markdown-rag.git
cd markdown-rag
uv sync
Run Linters
uv run ruff check .
uv run mypy .
Code Style
This project follows:
- Linting: Ruff with Google docstring convention
- Type Checking: mypy with strict settings
- Line Length: 79 characters
- Import Sorting: Alphabetical with isort
Project Structure
markdown-rag/
├── src/markdown_rag/
│ ├── __init__.py
│ ├── main.py # Entry point and MCP server
│ ├── config.py # Environment and CLI configuration
│ ├── models.py # Pydantic data models
│ ├── rag.py # Core RAG logic
│ ├── embeddings.py # Rate-limited embeddings wrapper
│ └── rate_limiter.py # Rate limiting algorithm
├── docs/
│ ├── api-reference.md # API documentation
│ ├── architecture.md # Architecture documentation
│ ├── mcp-integration.md # MCP server integration guide
│ └── user-guide.md # User guide
├── pyproject.toml # Project configuration
├── .env # Environment variables (not in git)
└── README.md
Troubleshooting
Common Issues
"Failed to start store: connection refused"
PostgreSQL not running or wrong connection settings. Check your connection parameters in environment variables.
"Rate limit exceeded"
Adjust rate limits in environment variables:
RATE_LIMIT_REQUESTS_PER_MINUTE=50
RATE_LIMIT_REQUESTS_PER_DAY=500
"pgvector extension not found"
The pgvector PostgreSQL extension is not installed. Follow the pgvector installation guide for your platform.
"Skipping all files (already in vector store)"
Expected behavior. The system prevents duplicate ingestion.
Logging
uv run markdown-rag ./docs --command ingest --level debug
Security
Best Practices
- Never commit
.envfiles - Add to.gitignore - Use environment variables for all secrets
- Restrict database access - Use firewall rules
- Rotate API keys regularly
- Use read-only database users for query-only deployments
Secrets Management
All secrets use SecretStr type to prevent accidental logging:
from pydantic import SecretStr
api_key = SecretStr("secret_value")
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make changes and add tests
- Run linters (
uv run ruff check .) - Run type checks (
uv run mypy .) - Commit changes (
git commit -m 'feat: add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open a Pull Request
Commit Message Format
Follow conventional commits:
feat: add new feature
fix: resolve bug
docs: update documentation
refactor: improve code structure
test: add tests
chore: update dependencies
TODOS
- Management of embeddings store via MCP tool.
- Add support for other embeddings models.
- Add support for other vector stores.
License
This project is licensed under the MIT License.
Acknowledgments
- LangChain - RAG framework
- Google Gemini - Embedding model
- pgvector - Vector similarity search
- FastMCP - MCP server framework
Support
- Documentation: docs/architecture.md
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.