Marcus Local MCP Server
Enables AI assistants to semantically search through indexed documentation websites and local code repositories using OpenAI embeddings and ChromaDB vector storage.
README
š Marcus Local MCP Server
A Model Context Protocol (MCP) server that indexes documentation sites and local code repositories for semantic search by AI assistants.
šÆ What Is This?
This is a local MCP server that enables AI assistants (Cursor, Claude Desktop, ChatGPT) to semantically search through:
- Documentation websites - Crawled and indexed from any docs site
- Local code repositories - All text files from your projects
It uses OpenAI embeddings to create a vector database (ChromaDB) that AI assistants can query through the Model Context Protocol.
Think of it as: Giving your AI assistant instant access to searchable documentation and your entire codebase.
š How It Works
āāāāāāāāāāāāāāāāāāā
ā AI Assistant ā (Cursor, Claude, ChatGPT, etc.)
ā (via MCP) ā
āāāāāāāāāā¬āāāāāāāāā
ā
ā¼
āāāāāāāāāāāāāāāāāāā
ā MCP Server ā (Python - stdio)
ā main.py ā
āāāāāāāāāā¬āāāāāāāāā
ā
ā¼
āāāāāāāāāāāāāāāāāāā āāāāāāāāāāāāāāāā
ā ChromaDB āāāāāāā⤠OpenAI ā
ā (Vector Store) ā ā Embeddings ā
āāāāāāāāāā¬āāāāāāāāā āāāāāāāāāāāāāāāā
ā
ā¼
āāāāāāāāāāāāāāāāāāāāāāāā
ā Indexed Sources ā
ā ⢠Documentation ā
ā - Moca Network ā
ā - Your Docs ā
ā ⢠Repositories ā
ā - Your Codebase ā
ā - Local Projects ā
āāāāāāāāāāāāāāāāāāāāāāāā
The Flow:
- Index - Crawl docs OR read local repo files
- Chunk - Split content into 800-token chunks
- Embed - Create OpenAI embeddings (batched for speed)
- Store - Save in ChromaDB vector database
- Search - AI assistant queries via MCP protocol
- Retrieve - Return relevant chunks from docs/code
š How to Run It
1. Setup
# Clone repository
git clone <your-repo>
cd crawl4ai_test
# Install Node.js dependencies
npm install
# Setup Python virtual environment
python3 -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install Python dependencies
pip install -r mcp-docs-server/requirements.txt
# Install Crawl4AI
pip install -U crawl4ai
crawl4ai-setup
2. Configure
Create .env file in mcp-docs-server/:
OPENAI_API_KEY=your_openai_api_key_here
EMBEDDING_MODEL=text-embedding-3-small
DEFAULT_RESULTS=5
3. Run the Web UI
# Start Next.js server
npm run dev
# Open browser
open http://localhost:3030
4. Connect to Cursor/Claude
Add to your AI assistant config:
For Cursor (~/.cursor/mcp.json or project config):
{
"mcpServers": {
"marcus-mcp-server": {
"command": "/path/to/your/venv/bin/python3",
"args": ["/path/to/crawl4ai_test/mcp-docs-server/server/main.py"]
}
}
}
For Claude Desktop (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"marcus-docs": {
"command": "/path/to/your/venv/bin/python",
"args": ["/path/to/crawl4ai_test/mcp-docs-server/server/main.py"]
}
}
}
š How to Use It
Adding Documentation
Via Web UI:
- Go to http://localhost:3030
- Click "Add New Docs"
- Enter:
- URL:
https://docs.example.com - Source Name:
Example Docs - Max Pages:
50(or unlimited)
- URL:
- Click "Start Indexing"
- Wait for completion
Via Command Line:
cd mcp-docs-server
source ../venv/bin/activate
python scripts/crawler.py https://docs.example.com "Example Docs" 50
python scripts/indexer_multi.py "Example Docs"
Adding Repositories
Via Web UI:
- Go to http://localhost:3030
- Click "Add Repository"
- Enter:
- Repository Path: Drag-and-drop folder OR paste path
- Source Name: Auto-generated from folder name
- Click "Start Indexing"
- Watch live progress
What gets indexed:
- ā
All text files (
.js,.py,.md,.tsx,.json,.css, etc.) - ā
Auto-skips:
node_modules,.git,venv,build,.next, etc. - ā Batched embeddings (50-100x faster)
Via Command Line:
cd mcp-docs-server
source ../venv/bin/activate
python scripts/repo_indexer.py "/path/to/your/repo" "My Project"
Searching
From Web UI:
- Enter query:
"How do I initialize the SDK?" - Select source (Docs, Repos, or All)
- Click "Search Documentation"
- View results
From AI Assistant:
Search all sources:
@marcus-mcp-server search for "authentication flow"
Filter by specific source:
@marcus-mcp-server search for "BorrowInterface component"
with source="Credo Protocol"
Example usage in Cursor:
User: Using my marcus-mcp-server, show me how authentication
is implemented in the Credo Protocol repository
AI: [Searches indexed repository and returns relevant code chunks]
Pro Tip: Always filter by source name to get focused results and save context tokens.
Managing Sources
View Sources:
- See all indexed docs and repos on the main page
- Filter by "Docs" or "Repos" tabs
- Expand to see individual pages/files
Delete Sources:
- Click trash icon next to any source
- Confirm deletion
- Source and all chunks are removed
š Project Structure
crawl4ai_test/
āāā pages/ # Next.js UI
ā āāā index.js # Main page (search + sources)
ā āāā add.js # Add documentation
ā āāā add-repo.js # Add repository
ā āāā api/ # API routes
ā āāā mcp-search.js # Search endpoint
ā āāā mcp-info.js # Get index info
ā āāā add-docs-crawl.js # Crawl docs
ā āāā add-docs-index.js # Index docs
ā āāā add-repo-index.js # Index repository
ā āāā mcp-delete-source.js # Delete source
āāā components/
ā āāā ui/ # shadcn/ui components
ā āāā home/ # Page components
āāā mcp-docs-server/ # MCP Server
ā āāā server/
ā ā āāā main.py # MCP server (stdio)
ā āāā scripts/
ā ā āāā crawler.py # Crawl docs with Crawl4AI
ā ā āāā indexer_multi.py # Index docs
ā ā āāā repo_indexer.py # Index repositories
ā ā āāā get_source_pages.py # Get pages/files
ā ā āāā search.py # Search
ā ā āāā delete_source.py # Delete sources
ā āāā data/
ā ā āāā chroma_db/ # Vector database
ā ā āāā chunks/ # Metadata
ā ā āāā raw/ # Crawled JSON
ā āāā requirements.txt
āāā venv/ # Python environment
šØ Built With
- Frontend: Next.js 15 + shadcn/ui + Tailwind CSS
- Backend: Python 3.13 + MCP Protocol
- Crawler: Crawl4AI
- Vector DB: ChromaDB
- Embeddings: OpenAI (text-embedding-3-small)
Status: ā Fully Operational | š¤ MCP Ready | š Search Enabled
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.