lsfusion-mcp

lsfusion-mcp

Enables RAG-powered documentation search using OpenAI embeddings and Pinecone vector database. Provides an extensible framework for adding additional tools with support for both local STDIO and production HTTP transports.

Category
Visit Server

README

lsfusion-mcp

An extensible MCP server hosting multiple tools. Ships with retrieve_docs(query: string) for RAG search (OpenAI embeddings -> Pinecone), and a structure ready for future tools (e.g., code syntax checks).

Transports:

  • STDIO for local development / desktop MCP clients.
  • Streamable HTTP for production via Uvicorn (mounted at /mcp).

Quickstart (local)

python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt

export OPENAI_API_KEY=sk-...        PINECONE_API_KEY=...        PINECONE_INDEX=lsfusion        PINECONE_NAMESPACE=""

# STDIO transport
python server.py stdio

# HTTP transport
python server.py http --host 0.0.0.0 --port 8000

Claude Desktop / MCP Inspector (STDIO)

mcp install server.py
mcp dev server.py

Adding new tools

Create a new module under tools/ and register it with @mcp.tool() in server.py (or build an auto-discovery if you prefer). Keep tool signatures simple and JSON-serializable.

Contract / output for retrieve_docs

Returns an array of objects:

[
  { "source": "documentation-how-to", "text": "....", "score": 0.73 },
  { "source": "articles", "text": "....", "score": 0.69 }
]

Sorted by score descending.

Environment variables

  • OPENAI_API_KEY — OpenAI API key
  • PINECONE_API_KEY — Pinecone API key
  • PINECONE_INDEX — Pinecone index name (default lsfusion)
  • PINECONE_NAMESPACE — Pinecone namespace (default empty)
  • EMBEDDING_MODEL — OpenAI embedding model (default text-embedding-3-large)

Docker

Build and run:

docker build -t lsfusion/mcp:latest .
docker run --rm -p 8000:8000 \
  -e OPENAI_API_KEY=$OPENAI_API_KEY \
  -e PINECONE_API_KEY=$PINECONE_API_KEY \
  lsfusion/mcp:latest

Or via Compose:

docker compose up --build

Production secrets (where to store keys)

Do not hardcode secrets. Options:

  1. Kubernetes Secrets + external secret store

    • Store secrets in AWS Secrets Manager / GCP Secret Manager / HashiCorp Vault.
    • Sync into K8s as Secret via External Secrets Operator.
    • Mount as env vars in the Deployment:
      env:
        - name: OPENAI_API_KEY
          valueFrom: { secretKeyRef: { name: mcp-secrets, key: openai } }
        - name: PINECONE_API_KEY
          valueFrom: { secretKeyRef: { name: mcp-secrets, key: pinecone } }
      
  2. Docker Swarm / Compose secrets

    • Use secrets: and mount files into the container, then export into env at entrypoint:
      services:
        mcp:
          image: lsfusion/mcp:latest
          secrets: [openai_key, pinecone_key]
      secrets:
        openai_key: { file: ./secrets/openai_key.txt }
        pinecone_key: { file: ./secrets/pinecone_key.txt }
      
    • Read them in an entrypoint script:
      export OPENAI_API_KEY="$(cat /run/secrets/openai_key)"
      export PINECONE_API_KEY="$(cat /run/secrets/pinecone_key)"
      exec python server.py http --host 0.0.0.0 --port 8000
      
  3. Cloud run / App services (ECS, Cloud Run, App Service)

    • Inject as environment variables wired to a managed secret store (e.g., AWS Parameter Store / Secrets Manager).
    • Rotate periodically; grant least-privilege IAM.
  4. CI/CD (GitHub Actions)

    • Store in Actions Secrets.
    • At build/deploy time pass them into the container as env vars or bake only into the runtime environment (never into the image).

This app reads credentials from environment variables, so your orchestrator should inject them from a secure store. Prefer secret stores over committing .env files.

Hardening checklist

  • Run as non-root (done in Dockerfile).
  • Keep logs to stdout/stderr; in STDIO mode, avoid extra prints (MCP uses stdio).
  • Set request timeouts and retries in your MCP client / reverse proxy.
  • Add health endpoint (optional) and readiness checks on /mcp handshake.

HTTP transport configuration (FastMCP)

FastMCP reads host/port from environment variables:

  • MCP_HOST (default: 127.0.0.1)
  • MCP_PORT (default: 8000)

Examples:

Local run

export OPENAI_API_KEY=sk-... PINECONE_API_KEY=...
export MCP_HOST=0.0.0.0 MCP_PORT=8000
python server.py http

Docker

docker run --rm -p 8000:8000 \  -e OPENAI_API_KEY=$OPENAI_API_KEY \  -e PINECONE_API_KEY=$PINECONE_API_KEY \  -e MCP_HOST=0.0.0.0 \  -e MCP_PORT=8000 \  ghcr.io/<org>/<repo>/lsfusion-mcp:latest

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured