LOTUS-MCP

LOTUS-MCP

Integration two AI's into a modernized MCP for better performance

blue-lotus-org

Research & Data
Visit Server

README

<div align="right"> <sub>Public | Free OpenSource</sub> </div>

LOTUS-MCP

FOSS solution

The LOTUS-MCP protocol outlined here is an impressive approach to model coordination and processing, integrating Mistral and Gemini with a structured architecture that allows for:

  • Routing & fallback strategies between models.
  • Consensus engine to compare outputs.
  • Context-aware processing, improving coherence across interactions.
  • Tool integration, making it extensible for external APIs.
  • Rate limiting & security for production stability.

The Model Context Protocol (MCP) developed by Anthropic for Claude is a groundbreaking open standard that enables AI assistants to connect with external data sources and tools.
As a developer or business maybe you like to have your own protocol. This guide made for you.

First looking into MCP exist by claude:

+-------------+     +-------------+     +-------------+
|             |     |             |     |             |
|    User     |     |     AI      |     |   External  |
|  Interface  |<--->|   Model     |<--->|    Tools    |
|             |     |(e.g. Claude)|     |  & Data     |
|             |     |             |     |             |
+-------------+     +-------------+     +-------------+
       ^                   ^                   ^
       |                   |                   |
       |                   |                   |
       v                   v                   v
+--------------------------------------------------+
|                                                  |
|           Model Context Protocol                 |
|                   (MCP)                          |
|                                                  |
+--------------------------------------------------+
       ^                   ^                   ^
       |                   |                   |
       |                   |                   |
       v                   v                   v
+-------------+     +-------------+     +-------------+
|             |     |             |     |             |
| Development |     |  Business   |     |   Content   |
| Environment |     |    Tools    |     | Repositories|
|             |     |             |     |             |
+-------------+     +-------------+     +-------------+

Statement

Then implement a new modernized structure for MCP. So first thing first is the cost:

| Metric          | Mistral Target | Gemini Target |
|-----------------|----------------|---------------|
| Latency         | <800ms         | <1200ms       |
| Accuracy        | 95%            | 92%           |
| Cost/1k tokens  | $0.15          | $0.25         |

So to build it we need an architecture design, something like this:

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│             │     │  Decision   │     │             │
│   User      ├────►│  Router     ├────►│  Mistral    │
│  Interface  │     │ (Task Type  │     │   (Code/    │
│             │◄────┤  Analysis)  │◄────┤   Text)     │
└─────────────┘     └─────────────┘     └─────────────┘
                        ▲   │               ▲   │
                        │   └───────┐       │   └────┐
                        ▼           ▼       ▼        ▼
                    ┌─────────┐ ┌─────────┐ ┌─────────┐
                    │ Gemini  │ │Fallback │ │Error    │
                    │(Multi-  │ │Model    │ │Handling │
                    │ modal)  │ │         │ │System   │
                    └─────────┘ └─────────┘ └─────────┘

This is User Input → Mistral (code/text processing) → Gemini (multimodal enhancement) → Final Output at the final of our journey we can to build. So go to start:

Beginning our journey

Now step-by-step guide to building a unified Model Context Protocol (MCP) system for integrating Mistral and Gemini in one application:


OUR MCP Architecture Design

┌──────────────┐       ┌───────────────┐       ┌──────────────┐
│              │       │               │       │              │
│  External    │       │   Unified     │       │   External   │
│   Tools      │◄─────►│  MCP Server   │◄─────►│   Data       │
│ (APIs, DBs)  │       │ (Orchestrator)│       │  Sources     │
└──────▲───────┘       └──────┬───┬────┘       └──────▲───────┘
       │                      │   │                   │
       │                      ▼   ▼                   │
┌──────┴───────┐       ┌───────────────┐       ┌──────┴───────┐
│              │       │               │       │              │
│   Mistral    │       │  MCP Client   │       │   Gemini     │
│  Interface   │◄─────►│(Adapter Layer)│◄─────►│ Interface    │
│              │       │               │       │              │
└──────────────┘       └───────────────┘       └──────────────┘

1. Protocol Specification

Define your MCP standard with these core components:

  • Message Format (JSON Schema):
    {
      "request_id": "uuid",
      "model": "mistral|gemini|both",
      "content": {"text": "", "files": []},
      "context": {"session": {}, "tools": []},
      "routing_rules": {"fallback": "auto", "priority": 0-100}
    }
    
  • API Endpoints:
    • /mcp/process - Main processing endpoint
    • /mcp/feedback - Response refinement loop
    • /mcp/context - Session management

2. Adapter Layer Implementation

Create model-specific adapters that translate MCP protocol to each AI's API:

Mistral Adapter:

class MistralMCPAdapter:
    def process(self, mcp_request):
        # Convert MCP format to Mistral's API format
        mistral_prompt = f"CONTEXT: {mcp_request['context']}\nQUERY: {mcp_request['content']}"
        response = mistral.generate(mistral_prompt)
        return self._to_mcp_format(response)

    def _to_mcp_format(self, raw_response):
        return {
            "model": "mistral",
            "content": raw_response.text,
            "metadata": {
                "tokens_used": raw_response.usage,
                "confidence": raw_response.scores
            }
        }

Gemini Adapter:

class GeminiMCPAdapter:
    def process(self, mcp_request):
        # Handle multimodal inputs
        if mcp_request['content']['files']:
            response = gemini.generate_content(
                [mcp_request['content']['text'], *mcp_request['content']['files']]
            )
        else:
            response = gemini.generate_text(mcp_request['content']['text'])
            
        return {
            "model": "gemini",
            "content": response.text,
            "metadata": {
                "safety_ratings": response.safety_ratings,
                "citation_metadata": response.citation_metadata
            }
        }

3. Unified Processing Workflow

def unified_processing(mcp_request):
    # Route based on model selection
    if mcp_request['model'] == 'both':
        mistral_result = MistralAdapter.process(mcp_request)
        gemini_result = GeminiAdapter.process(mcp_request)
        return consensus_engine(mistral_result, gemini_result)
    
    elif mcp_request['model'] == 'mistral':
        return MistralAdapter.process(mcp_request)
    
    elif mcp_request['model'] == 'gemini':
        return GeminiAdapter.process(mcp_request)
    
    else:
        raise MCPError("Invalid model selection")

4. Context Management System

Implement shared context handling:

class MCPContextManager:
    def __init__(self):
        self.session_context = {}
        self.tool_context = {
            'database': SQLConnector(),
            'apis': [SlackAPI(), GoogleWorkspace()],
            'filesystem': S3Storage()
        }

    def update_context(self, session_id, new_context):
        # Maintain 3-level context stack
        self.session_context[session_id] = {
            'immediate': new_context,
            'historical': self._rollup_context(session_id),
            'persistent': self._load_persistent_context(session_id)
        }

5. Tool Integration Layer

Create reusable connectors following MCP standard:

class MCPToolConnector:
    def __init__(self, tool_type):
        self.tool = self._initialize_tool(tool_type)
        
    def execute(self, action, params):
        try:
            result = self.tool.execute(action, params)
            return self._format_mcp_response(result)
        except ToolError as e:
            return self._format_error(e)

    def _format_mcp_response(self, result):
        return {
            "tool_response": result.data,
            "metadata": {
                "execution_time": result.timing,
                "confidence": result.accuracy_score
            }
        }

6. Security Implementation

Authentication Flow:

1. Client Request ──► MCP Gateway ──► JWT Validation
2. Token Validation ──► Model Access Control List
3. Request Logging ──► Encrypted Audit Trail
4. Response Sanitization ──► Content Filtering

Rate Limiting Setup:

# Use token bucket algorithm for both models
mcp_rate_limiter = RateLimiter(
    limits={
        'mistral': TokenBucket(rate=100/60),  # 100 requests/minute
        'gemini': TokenBucket(rate=50/60),
        'combined': TokenBucket(rate=75/60)
    }
)

7. Deployment Strategy

Recommended Stack:

services:
  mcp_gateway:
    image: nginx-plus
    config:
      rate_limiting: enabled
      
  core_service:
    image: python:3.11
    components:
      - model_adapter_layer
      - context_manager
      - tool_connectors
      
  monitoring:
    stack: prometheus + grafana
    metrics:
      - model_performance
      - context_hit_rate
      - tool_usage

8. Testing Framework

Implement 3-level verification:

  1. Unit Tests: Individual adapters and connectors
  2. Integration Tests: Full MCP request flows
  3. Chaos Tests: Model failure simulations

Example test case:

def test_cross_model_processing():
    request = {
        "model": "both",
        "content": "Explain quantum computing in simple terms",
        "context": {"user_level": "expert"}
    }
    
    response = unified_processing(request)
    
    assert 'mistral' in response['sources']
    assert 'gemini' in response['sources']
    assert validate_consensus(response['content'])

Key Advantages of This Approach

  1. Unified Interface: Single protocol for both models
  2. Context Sharing: Maintains session state across different AI systems
  3. Tool Reusability: Common connectors work with both Mistral and Gemini
  4. Cost Optimization: Smart routing based on model capabilities
  5. Failover Support: Automatic fallback between models

Start with implementing the adapter layer first, then build out the context management system before adding tool integrations. Use gradual rollout with shadow mode (run both models but only show one output) to compare performance before full deployment.

💐 Congratulations, you own your own MCP-like framework! 🍷


Disclaimer: The codes may not ultimately produce real results, this is just a workaround. Understand the path architecture and build the foundation for this movement in the world of AI.

Licenses: MIT , Apache 2 — So feel free to use & edit & distribution.

credit: Blue Lotus

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python