LoL Data MCP Server
A comprehensive League of Legends data ecosystem that provides access to champion statistics, item data, and patch history via the Model Context Protocol. It enables analysis of game mechanics, build optimization, and meta tracking through real-time data integration.
README
š§ PROJECT UNDER MAJOR RESTRUCTURE š§
LoL Data MCP Server is currently undergoing comprehensive restructuring and enhancement. This project will cover significantly more functionality than originally planned.
š Current Status: Major Expansion in Progress
This project is being actively restructured to become a comprehensive League of Legends data ecosystem that will include:
šÆ Planned Coverage Areas (Under Development)
Phase 1: Core Data Infrastructure ā”
- Champion Data System: Complete champion statistics, abilities, and patch history
- Item Data System: Item statistics, build paths, and patch tracking
- Runes & Masteries: Complete rune system integration
- Game Mechanics: Damage calculations, scaling formulas, and interactions
Phase 2: Advanced Analytics š
- Meta Analysis: Patch-by-patch meta evolution tracking
- Build Optimization: AI-powered optimal builds for different scenarios
- Champion Synergies: Advanced team composition analysis
- Performance Metrics: Win rates, pick/ban statistics, and trend analysis
Phase 3: AI Integration š¤
- Training Data Generation: Structured datasets for machine learning
- Game State Recognition: Real-time game state parsing and analysis
- Decision Support: AI-powered recommendations for in-game decisions
- Simulation Environment: Complete LoL simulation for AI training
Phase 4: Real-Time Services ā”
- Live Match Data: Real-time match tracking and analysis
- Player Analytics: Individual player performance tracking
- Meta Predictions: AI-powered meta shift predictions
- Community Integration: Discord bots, web APIs, and mobile apps
Phase 5: Advanced Features š
- Video Analysis: Automatic highlight detection and analysis
- Voice Integration: Voice-activated champion information and builds
- AR/VR Support: Immersive data visualization for coaching
- Esports Analytics: Professional match analysis and statistics
š ļø Technical Scope Expansion
Data Sources Integration
- League of Legends Wiki: Primary source for comprehensive game data
- Riot Games API: Official live data and statistics
- Community Platforms: Reddit, Discord, and forums for meta insights
- Esports Platforms: Professional match data and analytics
- Streaming Platforms: Popular streamer builds and strategies
Technology Stack Enhancement
- Backend: FastAPI, WebSocket, async/await patterns
- Data Processing: BeautifulSoup, Selenium, pandas, numpy
- AI/ML: TensorFlow, PyTorch, scikit-learn for analytics
- Caching: Redis for high-performance data caching
- Database: PostgreSQL for structured data, MongoDB for flexible schemas
- API Integration: RESTful APIs, GraphQL, WebSocket real-time updates
Integration Capabilities
- IDE Integration: Cursor, VS Code, JetBrains via MCP protocol
- Discord Bots: Real-time champion information and builds
- Web Applications: React/Vue frontends for data visualization
- Mobile Apps: React Native for on-the-go access
- CLI Tools: Command-line utilities for developers
- Game Overlays: In-game information overlays
šÆ Project Timeline
Current Phase: Core Infrastructure Development
Expected Completion: Rolling releases with major milestones every 2-4 weeks
Full Feature Set: Estimated 6-12 months for complete ecosystem
š Related Projects
This MCP server will serve as the data backbone for:
- LoL Simulation Environment: AI training environments
- Taric AI Agent: Specialized support champion AI
- Community Tools: Discord bots, web apps, and mobile applications
- Research Projects: Academic and professional esports analytics
š Development Status
ā Currently Implemented:
- Basic MCP server infrastructure
- Champion statistics scraping (with level-specific data)
- Champion abilities extraction
- Item patch history tracking
- Real-time wiki data integration
š Under Active Development:
- Advanced item data system
- Comprehensive patch tracking
- Enhanced data accuracy and validation
- Performance optimization and caching
š Planned Features:
- Complete runes and masteries system
- Build recommendation engine
- Meta analysis and tracking
- Real-time match integration
- AI-powered insights and recommendations
ā” This project represents a significant expansion beyond the original scope and will become a comprehensive League of Legends data ecosystem serving multiple AI, analytics, and community applications.
š Stay tuned for regular updates as we build the most comprehensive LoL data service available.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.