Logseq AI
Enables external AI assistants to interact with Logseq graphs through 34 specialized tools for managing pages, blocks, journals, and tasks via the local HTTP API.
README
Logseq AI
AI-powered interactions with Logseq through two interfaces:
- MCP Server - Enables external AI tools (Windsurf, Claude Desktop) to interact with your Logseq graph
- Lain - Embedded AI assistant plugin within the Logseq UI
"No matter where you go, everyone's connected." - Serial Experiments Lain
Prerequisites
- Node.js 18+
- Logseq desktop app with HTTP API server enabled (Settings → Features → HTTP APIs server)
Setup
# Install dependencies
pnpm install
# Build all packages
pnpm build
Quick Start
Using the Core Library
import { LogseqClient, LogseqOperations } from "@logseq-ai/core";
// Create client and operations
const client = new LogseqClient({
baseUrl: "http://localhost:12315",
token: "your-api-token" // optional
});
const ops = new LogseqOperations(client);
// Search for pages
const results = await ops.search("meeting notes");
// Get page content as text
const content = await ops.getPageContent("My Notes");
// Create a new block
const block = await ops.createBlock({
pageName: "My Notes",
content: "New idea from AI!"
});
// Create multiple blocks with hierarchy (more efficient for structured content)
const result = await ops.createBlocks("My Notes", [
{
content: "## Project Overview",
children: [
{ content: "Goal: Build a new feature" },
{ content: "Timeline: Q1 2025" },
]
},
{
content: "## Tasks",
children: [
{ content: "Design the API" },
{ content: "Implement backend" },
{ content: "Write tests" },
]
}
]);
console.log(`Created ${result.created} blocks`);
// Run a Datalog query to find TODOs
const todos = await ops.query(`
[:find (pull ?b [*])
:where [?b :block/marker "TODO"]]
`);
Task Management
import { LogseqClient, LogseqOperations } from "@logseq-ai/core";
const client = new LogseqClient();
const ops = new LogseqOperations(client);
// Get all active tasks
const tasks = await ops.getTasks();
// Get tasks from a specific page
const projectTasks = await ops.getTasks({ pageName: "Project A" });
// Create a new task with priority and deadline
const task = await ops.createTask({
pageName: "Project A",
content: "Review pull request",
priority: "A",
deadline: "2024-12-15"
});
// Mark task as in progress
await ops.markTask(task.uuid, "DOING");
// Complete the task
await ops.markTask(task.uuid, "DONE");
// Set/change priority
await ops.setTaskPriority(task.uuid, "B");
// Set scheduled date
await ops.setTaskScheduled({ uuid: task.uuid, date: "2024-12-10" });
// Remove deadline
await ops.setTaskDeadline({ uuid: task.uuid, date: null });
Task Analytics
// Get overdue tasks
const overdue = await ops.getOverdueTasks();
console.log(`You have ${overdue.length} overdue tasks`);
// Get tasks due in the next 7 days
const dueSoon = await ops.getTasksDueSoon({ days: 7 });
// Get task statistics
const stats = await ops.getTaskStats();
console.log(`Total: ${stats.total}, Overdue: ${stats.overdue}`);
console.log(`By status:`, stats.byMarker);
// Search tasks by keyword
const reviewTasks = await ops.searchTasks({ query: "review", markers: ["TODO"] });
Journal Operations
// Get or create today's journal
const today = await ops.getToday();
console.log(`Today's journal: ${today.page.name}`);
// Quick capture to today's journal
await ops.appendToToday("Meeting notes: discussed Q1 roadmap");
// Get recent journal entries
const journals = await ops.getRecentJournals({ days: 7, includeContent: true });
journals.forEach(j => console.log(`${j.date}: ${j.content.substring(0, 50)}...`));
Page Links & Backlinks
// Find pages related to a topic
const links = await ops.findRelatedPages("Project A");
console.log("Pages linking to Project A:", links.backlinks);
console.log("Pages Project A links to:", links.forwardLinks);
// Find blocks referencing a specific block
const backlinks = await ops.getBlockBacklinks("block-uuid-123");
console.log(`Found ${backlinks.backlinks.length} references`);
Error Handling
import {
LogseqOperations,
LogseqApiError,
LogseqNotFoundError,
isLogseqError
} from "@logseq-ai/core";
try {
await ops.getPageContent("Nonexistent Page");
} catch (error) {
if (error instanceof LogseqNotFoundError) {
console.log(`Page not found: ${error.identifier}`);
} else if (isLogseqError(error)) {
console.log(`Logseq error: ${error.toDetailedString()}`);
}
}
Packages
@logseq-ai/core
Shared library for Logseq API interactions. Used by both the MCP server and plugin.
Key exports:
LogseqClient- Low-level HTTP client for Logseq APILogseqOperations- High-level operations with error handling- Error classes:
LogseqError,LogseqApiError,LogseqConnectionError,LogseqNotFoundError,LogseqValidationError - Type definitions:
Page,Block,SearchResult, etc.
@logseq-ai/mcp-server
MCP server that exposes Logseq operations as tools for AI clients.
Features:
- 34 tools for comprehensive Logseq interaction
- Input validation with clear error messages (powered by Zod)
- Proper error handling for Logseq API errors
# Build
pnpm --filter @logseq-ai/mcp-server build
# Run
LOGSEQ_API_TOKEN=your-token pnpm --filter @logseq-ai/mcp-server start
# Test
pnpm --filter @logseq-ai/mcp-server test
Configure in Windsurf/Claude Desktop
Add to your MCP configuration:
{
"mcpServers": {
"logseq": {
"command": "node",
"args": ["/path/to/logseq-ai/packages/mcp-server/dist/index.js"],
"env": {
"LOGSEQ_API_URL": "http://localhost:12315",
"LOGSEQ_API_TOKEN": "your-token"
}
}
}
}
Available Tools
Page & Block Operations
| Tool | Description |
|---|---|
search_logseq |
Search for pages and blocks |
get_page |
Get page content as plain text |
get_pages |
Get multiple pages in a batch (more efficient) |
get_page_with_context |
Get page with backlinks and forward links |
list_pages |
List all pages in the graph |
create_page |
Create a new page (optionally with blocks) |
delete_page |
Delete a page |
create_block |
Create a single block |
create_blocks |
Create multiple blocks with hierarchy |
update_block |
Update a block's content |
delete_block |
Delete a block |
query_logseq |
Run Datalog queries |
update_page_properties |
Update properties on an existing page |
Graph Discovery
| Tool | Description |
|---|---|
get_current_graph |
Get current graph info |
get_graph_stats |
Get graph statistics (pages by type, orphans, etc.) |
find_missing_pages |
Find referenced pages that don't exist |
find_orphan_pages |
Find pages with no incoming links |
find_pages_by_properties |
Find pages by property values |
find_related_pages |
Find backlinks and forward links |
get_block_backlinks |
Find blocks referencing a block |
Journal Operations
| Tool | Description |
|---|---|
get_today |
Get today's journal page |
append_to_today |
Add content to today's journal |
get_recent_journals |
Get recent journal entries |
Task Management
| Tool | Description |
|---|---|
get_tasks |
Get TODO/DOING tasks |
create_task |
Create a new task |
mark_task |
Change task status |
mark_tasks |
Change multiple tasks' status (batch) |
search_tasks |
Search tasks by keyword |
get_overdue_tasks |
Get tasks past deadline |
get_tasks_due_soon |
Get tasks due within N days |
get_task_stats |
Get task statistics |
set_task_priority |
Set task priority (A/B/C) |
set_task_deadline |
Set task deadline |
set_task_scheduled |
Set task scheduled date |
Example: Creating Structured Content
When creating pages with multiple sections, use create_blocks for efficiency:
User: Create a page about Python with sections for Overview, Features, and Links
AI uses:
1. create_page("Python", "type:: #Technology\ntags:: #Programming")
2. create_blocks("Python", [
{
content: "## Overview",
children: [
{ content: "Python is a high-level programming language." }
]
},
{
content: "## Features",
children: [
{ content: "Dynamic typing" },
{ content: "Garbage collection" },
{ content: "Large standard library" }
]
},
{
content: "## Links",
children: [
{ content: "[Official Site](https://python.org)" }
]
}
])
logseq-lain
Lain - AI assistant plugin for Logseq.
# Build
pnpm --filter logseq-lain build
# Development (watch mode)
pnpm dev:plugin
Install in Logseq
- Enable Developer Mode in Logseq (Settings → Advanced → Developer mode)
- Go to Plugins → Load unpacked plugin
- Select the
packages/logseq-plugindirectory - Use
/lain ask,/lain summarize,/lain expandslash commands
Architecture
See doc/architecture.md for detailed architecture documentation.
Development
# Build everything
pnpm build
# Run all tests (188 tests)
pnpm test
# Type check all packages
pnpm typecheck
# Lint
pnpm lint
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.