Logseq AI

Logseq AI

Enables external AI assistants to interact with Logseq graphs through 34 specialized tools for managing pages, blocks, journals, and tasks via the local HTTP API.

Category
Visit Server

README

Logseq AI

AI-powered interactions with Logseq through two interfaces:

  1. MCP Server - Enables external AI tools (Windsurf, Claude Desktop) to interact with your Logseq graph
  2. Lain - Embedded AI assistant plugin within the Logseq UI

"No matter where you go, everyone's connected." - Serial Experiments Lain

Prerequisites

  • Node.js 18+
  • Logseq desktop app with HTTP API server enabled (Settings → Features → HTTP APIs server)

Setup

# Install dependencies
pnpm install

# Build all packages
pnpm build

Quick Start

Using the Core Library

import { LogseqClient, LogseqOperations } from "@logseq-ai/core";

// Create client and operations
const client = new LogseqClient({
  baseUrl: "http://localhost:12315",
  token: "your-api-token" // optional
});
const ops = new LogseqOperations(client);

// Search for pages
const results = await ops.search("meeting notes");

// Get page content as text
const content = await ops.getPageContent("My Notes");

// Create a new block
const block = await ops.createBlock({
  pageName: "My Notes",
  content: "New idea from AI!"
});

// Create multiple blocks with hierarchy (more efficient for structured content)
const result = await ops.createBlocks("My Notes", [
  {
    content: "## Project Overview",
    children: [
      { content: "Goal: Build a new feature" },
      { content: "Timeline: Q1 2025" },
    ]
  },
  {
    content: "## Tasks",
    children: [
      { content: "Design the API" },
      { content: "Implement backend" },
      { content: "Write tests" },
    ]
  }
]);
console.log(`Created ${result.created} blocks`);

// Run a Datalog query to find TODOs
const todos = await ops.query(`
  [:find (pull ?b [*])
   :where [?b :block/marker "TODO"]]
`);

Task Management

import { LogseqClient, LogseqOperations } from "@logseq-ai/core";

const client = new LogseqClient();
const ops = new LogseqOperations(client);

// Get all active tasks
const tasks = await ops.getTasks();

// Get tasks from a specific page
const projectTasks = await ops.getTasks({ pageName: "Project A" });

// Create a new task with priority and deadline
const task = await ops.createTask({
  pageName: "Project A",
  content: "Review pull request",
  priority: "A",
  deadline: "2024-12-15"
});

// Mark task as in progress
await ops.markTask(task.uuid, "DOING");

// Complete the task
await ops.markTask(task.uuid, "DONE");

// Set/change priority
await ops.setTaskPriority(task.uuid, "B");

// Set scheduled date
await ops.setTaskScheduled({ uuid: task.uuid, date: "2024-12-10" });

// Remove deadline
await ops.setTaskDeadline({ uuid: task.uuid, date: null });

Task Analytics

// Get overdue tasks
const overdue = await ops.getOverdueTasks();
console.log(`You have ${overdue.length} overdue tasks`);

// Get tasks due in the next 7 days
const dueSoon = await ops.getTasksDueSoon({ days: 7 });

// Get task statistics
const stats = await ops.getTaskStats();
console.log(`Total: ${stats.total}, Overdue: ${stats.overdue}`);
console.log(`By status:`, stats.byMarker);

// Search tasks by keyword
const reviewTasks = await ops.searchTasks({ query: "review", markers: ["TODO"] });

Journal Operations

// Get or create today's journal
const today = await ops.getToday();
console.log(`Today's journal: ${today.page.name}`);

// Quick capture to today's journal
await ops.appendToToday("Meeting notes: discussed Q1 roadmap");

// Get recent journal entries
const journals = await ops.getRecentJournals({ days: 7, includeContent: true });
journals.forEach(j => console.log(`${j.date}: ${j.content.substring(0, 50)}...`));

Page Links & Backlinks

// Find pages related to a topic
const links = await ops.findRelatedPages("Project A");
console.log("Pages linking to Project A:", links.backlinks);
console.log("Pages Project A links to:", links.forwardLinks);

// Find blocks referencing a specific block
const backlinks = await ops.getBlockBacklinks("block-uuid-123");
console.log(`Found ${backlinks.backlinks.length} references`);

Error Handling

import { 
  LogseqOperations, 
  LogseqApiError, 
  LogseqNotFoundError,
  isLogseqError 
} from "@logseq-ai/core";

try {
  await ops.getPageContent("Nonexistent Page");
} catch (error) {
  if (error instanceof LogseqNotFoundError) {
    console.log(`Page not found: ${error.identifier}`);
  } else if (isLogseqError(error)) {
    console.log(`Logseq error: ${error.toDetailedString()}`);
  }
}

Packages

@logseq-ai/core

Shared library for Logseq API interactions. Used by both the MCP server and plugin.

Key exports:

  • LogseqClient - Low-level HTTP client for Logseq API
  • LogseqOperations - High-level operations with error handling
  • Error classes: LogseqError, LogseqApiError, LogseqConnectionError, LogseqNotFoundError, LogseqValidationError
  • Type definitions: Page, Block, SearchResult, etc.

@logseq-ai/mcp-server

MCP server that exposes Logseq operations as tools for AI clients.

Features:

  • 34 tools for comprehensive Logseq interaction
  • Input validation with clear error messages (powered by Zod)
  • Proper error handling for Logseq API errors
# Build
pnpm --filter @logseq-ai/mcp-server build

# Run
LOGSEQ_API_TOKEN=your-token pnpm --filter @logseq-ai/mcp-server start

# Test
pnpm --filter @logseq-ai/mcp-server test

Configure in Windsurf/Claude Desktop

Add to your MCP configuration:

{
  "mcpServers": {
    "logseq": {
      "command": "node",
      "args": ["/path/to/logseq-ai/packages/mcp-server/dist/index.js"],
      "env": {
        "LOGSEQ_API_URL": "http://localhost:12315",
        "LOGSEQ_API_TOKEN": "your-token"
      }
    }
  }
}

Available Tools

Page & Block Operations

Tool Description
search_logseq Search for pages and blocks
get_page Get page content as plain text
get_pages Get multiple pages in a batch (more efficient)
get_page_with_context Get page with backlinks and forward links
list_pages List all pages in the graph
create_page Create a new page (optionally with blocks)
delete_page Delete a page
create_block Create a single block
create_blocks Create multiple blocks with hierarchy
update_block Update a block's content
delete_block Delete a block
query_logseq Run Datalog queries
update_page_properties Update properties on an existing page

Graph Discovery

Tool Description
get_current_graph Get current graph info
get_graph_stats Get graph statistics (pages by type, orphans, etc.)
find_missing_pages Find referenced pages that don't exist
find_orphan_pages Find pages with no incoming links
find_pages_by_properties Find pages by property values
find_related_pages Find backlinks and forward links
get_block_backlinks Find blocks referencing a block

Journal Operations

Tool Description
get_today Get today's journal page
append_to_today Add content to today's journal
get_recent_journals Get recent journal entries

Task Management

Tool Description
get_tasks Get TODO/DOING tasks
create_task Create a new task
mark_task Change task status
mark_tasks Change multiple tasks' status (batch)
search_tasks Search tasks by keyword
get_overdue_tasks Get tasks past deadline
get_tasks_due_soon Get tasks due within N days
get_task_stats Get task statistics
set_task_priority Set task priority (A/B/C)
set_task_deadline Set task deadline
set_task_scheduled Set task scheduled date

Example: Creating Structured Content

When creating pages with multiple sections, use create_blocks for efficiency:

User: Create a page about Python with sections for Overview, Features, and Links

AI uses:
1. create_page("Python", "type:: #Technology\ntags:: #Programming")
2. create_blocks("Python", [
     {
       content: "## Overview",
       children: [
         { content: "Python is a high-level programming language." }
       ]
     },
     {
       content: "## Features", 
       children: [
         { content: "Dynamic typing" },
         { content: "Garbage collection" },
         { content: "Large standard library" }
       ]
     },
     {
       content: "## Links",
       children: [
         { content: "[Official Site](https://python.org)" }
       ]
     }
   ])

logseq-lain

Lain - AI assistant plugin for Logseq.

# Build
pnpm --filter logseq-lain build

# Development (watch mode)
pnpm dev:plugin

Install in Logseq

  1. Enable Developer Mode in Logseq (Settings → Advanced → Developer mode)
  2. Go to Plugins → Load unpacked plugin
  3. Select the packages/logseq-plugin directory
  4. Use /lain ask, /lain summarize, /lain expand slash commands

Architecture

See doc/architecture.md for detailed architecture documentation.

Development

# Build everything
pnpm build

# Run all tests (188 tests)
pnpm test

# Type check all packages
pnpm typecheck

# Lint
pnpm lint

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured