Logic-LM MCP Server

Logic-LM MCP Server

Provides symbolic reasoning capabilities by converting natural language logical problems into Answer Set Programming (ASP) format and solving them using the Clingo solver. Enables users to perform formal logical reasoning, verify logical arguments, and get step-by-step explanations for complex logical problems.

Category
Visit Server

README

Logic-LM MCP Server

A Model Context Protocol (MCP) server that provides symbolic reasoning capabilities using Logic-LM framework and Answer Set Programming (ASP).

Attribution

This implementation is inspired by and builds upon the Logic-LLM framework:

Original Research:

This MCP server adapts the Logic-LLM approach for integration with Claude Code and other MCP clients, providing LLM-collaborative symbolic reasoning through Answer Set Programming.

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher

Installation

Choose your preferred installation method:

Option 1: Install from PyPI (Recommended) ✅ LIVE ON PYPI

# Install with pip
pip install logic-lm-mcp-server

# Or install with uv (10-100x faster)
uv pip install logic-lm-mcp-server

📦 Package URL: https://pypi.org/project/logic-lm-mcp-server/

Option 2: Install with Clingo solver (for full functionality)

# Install with optional solver
pip install logic-lm-mcp-server[solver]

# Or with uv
uv pip install logic-lm-mcp-server[solver]

Option 3: Development Installation

git clone https://github.com/stevenwangbe/logic-lm-mcp-server.git
cd logic-lm-mcp-server
pip install -e .

Test Installation

logic-lm-mcp --help

Integration with Claude Code

After installing the package, add it to your Claude Code configuration:

Method 1: Using the console command (after PyPI installation)

claude mcp add logic-lm-mcp logic-lm-mcp

Method 2: Manual configuration

Edit ~/.config/claude/claude_desktop_config.json (create if it doesn't exist):

{
  "mcpServers": {
    "logic-lm": {
      "command": "logic-lm-mcp"
    }
  }
}

Restart Claude Code to load the new MCP server.

  1. Test the integration:

Try these commands in Claude Code:

Check Logic-LM server health
Translate this logic problem to ASP: "All birds can fly. Penguins are birds. Can penguins fly?"

Alternative Integration (Other MCP Clients)

For other MCP-compatible tools, start the server manually:

python start_server.py

The server will run on stdio and provide these tools:

  • get_asp_guidelines - Get ASP translation guidelines
  • translate_to_asp_instructions - Get problem-specific ASP guidance
  • verify_asp_program - Execute ASP programs with Clingo
  • check_solver_health - Verify system health

Overview

Logic-LM MCP Server converts natural language logical problems into Answer Set Programming (ASP) format, solves them using the Clingo solver, and returns human-readable results. It provides a three-stage reasoning pipeline: Problem Formulation → Symbolic Reasoning → Result Interpretation.

Features

  • Natural Language Input: Convert English logical problems to formal representations
  • ASP-Based Reasoning: Uses Answer Set Programming for robust logical inference
  • Clingo Integration: Leverages the Clingo ASP solver for symbolic reasoning
  • Self-Refinement: Iterative improvement of solutions through multiple reasoning passes
  • Template Library: Reusable ASP patterns for common logical structures
  • Fallback Handling: Graceful degradation when solver components unavailable
  • FastMCP Integration: Modern MCP server implementation with type safety

Tools Provided

1. get_asp_guidelines

Get comprehensive ASP translation guidelines (cached for efficiency).

Parameters: None

Returns: Complete ASP Logic Translation Guidelines document with comprehensive instructions for translating natural language into Answer Set Programming format.

2. translate_to_asp_instructions

Get lightweight instructions for translating a specific natural language problem to ASP.

Parameters:

  • problem (string, required): Natural language logical problem to translate

Example:

{
  "problem": "All cats are mammals. Fluffy is a cat. Is Fluffy a mammal?"
}

Response:

{
  "success": true,
  "solution": "TRANSLATE TO ASP: All cats are mammals...\n\nINSTRUCTIONS:\n1. Call get_asp_guidelines() for complete patterns\n2. Analyze logical structure...",
  "confidence": 1.0,
  "method": "lightweight_translation_instructions",
  "metadata": {
    "problem_length": 58,
    "guidelines_cached": false,
    "next_steps": ["Call get_asp_guidelines() if needed", "Generate ASP code", "Call verify_asp_program()"]
  }
}

3. verify_asp_program

Directly verify and solve an ASP program using the Clingo solver.

Parameters:

  • program (string, required): ASP program code to verify and solve
  • max_models (integer, 1-100, default: 10): Maximum number of models to find

Example:

{
  "program": "% Facts\ncat(fluffy).\n\n% Rule: All cats are mammals\nmammal(X) :- cat(X).\n\n% Query\n#show mammal/1.",
  "max_models": 10
}

4. check_solver_health

Check Logic-LM server and Clingo solver health status.

Returns:

  • Server status and component initialization status
  • Clingo availability and version information
  • System capabilities and configuration details
  • Basic functionality test results

Architecture

Core Components

  1. LogicFramework: Main reasoning orchestrator
  2. ClingoSolver: ASP solver interface and management
  3. ASPTemplateLibrary: Reusable logical pattern templates
  4. FastMCP Integration: Modern MCP server implementation

Processing Pipeline

Natural Language Input
         ↓
LLM Translation Instructions (Problem-specific guidance)
         ↓  
ASP Program Generation (LLM-driven with guidelines)
         ↓
Clingo Solver Execution
         ↓
Model Interpretation (Symbolic results)
         ↓
Human-Readable Output

Dependencies

  • Python 3.8+: Core runtime environment
  • FastMCP 2.0+: Modern MCP server framework
  • Pydantic 2.0+: Input validation and type safety
  • Clingo 5.8.0+: ASP solver (automatically detects if missing)

Installation

Option 1: Using pip

pip install -r requirements.txt

Option 2: Manual installation

pip install fastmcp>=2.0.0 pydantic>=2.0.0 clingo>=5.8.0

Option 3: Development setup

git clone <repository-url>
cd logic-lm-mcp-server
pip install -e .

Configuration

The server automatically handles:

  • Clingo solver installation detection
  • Template library loading
  • Environment-specific optimizations
  • Error recovery and fallback modes

Environment Variables

  • No environment variables required
  • Server runs with sensible defaults

Usage Examples

Basic Logical Reasoning

Input: "If it's raining, then the ground is wet. It's raining. Is the ground wet?"
Output: "Yes, the ground is wet. This conclusion follows from modus ponens..."

Syllogistic Reasoning

Input: "All birds can fly. Penguins are birds. Can penguins fly?"
Output: "Based on the given premises, yes. However, this conflicts with real-world knowledge..."

Set-Based Logic

Input: "All members of set A are in set B. X is in set A. Is X in set B?"
Output: "Yes, X is in set B. This follows from set inclusion transitivity..."

Testing

Basic Functionality Test

logic-lm-mcp --help

Test MCP Integration

# Test with Claude Code
claude mcp get logic-lm

Error Handling

  • Clingo Unavailable: Provides informative error messages with installation guidance
  • Invalid ASP Programs: Syntax checking with detailed error messages
  • Solver Timeouts: Graceful handling of complex problems
  • Resource Constraints: Memory and time limit management

Performance

  • Simple Problems: 50-200ms response time
  • Complex Reasoning: 200-1000ms with self-refinement
  • Memory Usage: ~25MB base + ~1MB per concurrent request
  • Concurrent Support: Multiple simultaneous reasoning requests

Troubleshooting

Common Issues

  1. "No module named 'pydantic'" or similar

    • Install dependencies: pip install -r requirements.txt
  2. "Clingo not available"

    • Install Clingo: pip install clingo
    • Server will run with limited functionality if Clingo is missing
  3. Server fails to start

    • Check Python version: python --version (requires 3.8+)
    • Test installation: logic-lm-mcp --help
  4. MCP connection issues

    • Verify MCP server configuration: claude mcp get logic-lm
    • Check installation: logic-lm-mcp --help

Getting Help

  1. Test installation: logic-lm-mcp --help
  2. Check the health endpoint: use check_solver_health tool
  3. Enable debug traces: set include_trace=true in requests

FAQ - Common Setup Errors

"Missing required dependencies" on startup

Error:

❌ Missing required dependencies:
  - fastmcp>=2.0.0
  - pydantic>=2.0.0

Cause: Dependencies not properly installed or virtual environment not activated.

Solution:

# Option 1: Use virtual environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt

# Option 2: Install globally
pip install -r requirements.txt

# Option 3: Use venv python directly
venv/bin/python start_server.py

"ModuleNotFoundError: No module named 'fastmcp'"

Error:

Traceback (most recent call last):
  File "<string>", line 1, in <module>
ModuleNotFoundError: No module named 'fastmcp'

Cause: Virtual environment not properly activated or dependencies not installed.

Solution:

# Clean installation
rm -rf venv/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

"ModuleNotFoundError: No module named 'pydantic'"

Error:

ModuleNotFoundError: No module named 'pydantic'

Cause: Missing core dependency, often from incomplete installation.

Solution:

pip install pydantic>=2.0.0
# Or reinstall all dependencies
pip install -r requirements.txt

Virtual environment using system Python instead of venv Python

Error: Virtual environment is using the system Python instead of the isolated venv Python.

Symptoms:

  • Packages installed globally instead of in venv
  • Permission errors during package installation
  • which python shows system path after activation
  • Inconsistent behavior between development and production

Causes:

  • Incorrect virtual environment activation
  • Shell aliases overriding PATH (alias python, alias python3)
  • Corrupted virtual environment
  • PATH configuration issues

Solutions:

Option 1: Verify and fix activation

# Check if activation worked properly
source venv/bin/activate
which python  # Should show venv/bin/python, not /usr/bin/python

# If still showing system python, check for aliases
alias python
alias python3

# Remove problematic aliases
unalias python
unalias python3

Option 2: Use explicit venv path (most reliable)

# Instead of relying on activation, use direct paths
venv/bin/python -c "import sys; print(sys.executable)"
venv/bin/pip install package-name

# For our package specifically
venv/bin/python -c "from logic_lm_mcp import LogicFramework; print('✅ Works!')"

Option 3: Recreate virtual environment

# Clean recreation if venv is corrupted
rm -rf venv/
python3 -m venv venv
source venv/bin/activate
which python  # Verify it shows venv/bin/python
pip install logic-lm-mcp-server

Option 4: Use absolute paths in shell

# For Linux/Mac
/full/path/to/venv/bin/python script.py

# For Windows  
C:\full\path\to\venv\Scripts\python.exe script.py

"Clingo not available" but everything else works

Error:

"clingo_available": false

Cause: Clingo ASP solver not installed.

Solution:

# Option 1: Via pip
pip install clingo>=5.8.0

# Option 2: Via conda
conda install -c conda-forge clingo

# Option 3: Check installation
python -c "import clingo; print('Clingo available')"

Server starts but MCP tools not available

Error: MCP connection fails or tools not found.

Cause: Server not properly configured in Claude Code.

Solution:

  1. Verify server is running: python start_server.py
  2. Check Claude Code MCP configuration
  3. Restart Claude Code if needed
  4. Use absolute paths in configuration

Python version compatibility issues

Error:

SyntaxError: invalid syntax

Cause: Python version < 3.8.

Solution:

# Check Python version
python --version  # Must be 3.8+

# Use specific Python version
python3.8 -m venv venv
# or
python3.9 -m venv venv

Background process conflicts

Error: Server won't start, port already in use.

Cause: Previous server instance still running.

Solution:

# Kill existing processes
pkill -f start_server.py
pkill -f logic-lm

# Or find and kill specific process
ps aux | grep start_server
kill <process_id>

File permission errors

Error:

PermissionError: [Errno 13] Permission denied

Cause: Insufficient file permissions.

Solution:

# Fix permissions
chmod +x start_server.py
chmod -R 755 src/

# Or run with appropriate permissions
sudo python start_server.py  # Not recommended

Import path issues

Error:

ModuleNotFoundError: No module named 'src'

Cause: Python can't find local modules.

Solution:

# Run from project root directory
cd /path/to/logic-lm-mcp-server
python start_server.py

# Or use absolute imports
export PYTHONPATH="${PYTHONPATH}:$(pwd)"

Cache or old dependency conflicts

Error: Server uses old logic after code changes.

Cause: Python bytecode cache or old dependencies.

Solution:

# Clear Python cache
find . -type d -name "__pycache__" -exec rm -rf {} +
find . -name "*.pyc" -delete

# Reinstall dependencies cleanly
rm -rf venv/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

# Restart Claude Code

Memory or resource issues

Error: Server crashes or becomes unresponsive.

Cause: Insufficient system resources.

Solution:

  • Close other applications to free memory
  • Use smaller max_models parameter in requests
  • Check system requirements (25MB base memory)
  • Monitor server logs for resource warnings

Development

Project Structure

logic-lm-mcp-server/
├── src/
│   ├── __init__.py           # Package initialization
│   ├── logic_lm_mcp/
│   │   ├── __init__.py       # Package initialization
│   │   ├── main.py           # FastMCP server implementation
│   │   ├── logic_framework.py # Core Logic-LM framework
│   │   └── asp_templates.py   # ASP template library
├── pyproject.toml            # Modern Python packaging
├── requirements.txt          # Python dependencies
├── start_server.py          # Development server startup
└── README.md               # This documentation

Adding New Templates

  1. Edit src/logic_lm_mcp/asp_templates.py
  2. Add new template to _initialize_templates() method
  3. Test with logic-lm-mcp --help and MCP tools

Extending Logic Framework

  1. Edit src/logic_lm_mcp/logic_framework.py
  2. Add new reasoning methods to LogicFramework class
  3. Update FastMCP tools in src/logic_lm_mcp/main.py

Resources

ASP Templates

The server provides access to ASP templates via MCP resources:

  • asp-templates://list - List all available templates
  • asp-templates://info/{template_name} - Get template information
  • asp-templates://template/{template_name} - Get template code

Available Templates

  • universal: Universal quantification (All X are Y)
  • conditional: Conditional rules (If X then Y)
  • syllogism: Basic syllogistic reasoning
  • existential: Existential quantification (Some X are Y)
  • negation: Negation patterns (No X are Y)
  • set_membership: Set membership and relationships
  • transitive: Transitive relationships

License

MIT License - See LICENSE file for details.

Support

For issues, feature requests, or questions about Logic-LM reasoning capabilities, please:

  1. Test installation: logic-lm-mcp --help
  2. Check the troubleshooting section above
  3. Open an issue in the repository with:
    • Python version
    • Operating system
    • Error messages
    • Installation method used (pip/uv)

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured