Log Analyzer MCP
An MCP server for AI-powered log analysis that enables parsing, searching, and debugging across nine log formats directly within Claude. It features automated error extraction, sensitive data scanning, and streaming support for large log files.
README
Log Analyzer MCP
<!-- mcp-name: io.github.Fato07/log-analyzer-mcp -->
๐ Stop copy-pasting logs into AI. Let Claude read them directly.
An MCP server for AI-powered log analysis. Parse, search, and debug log files across 9+ formats โ right from Claude Code.
๐ At a Glance
| 14 MCP tools | 9+ log formats |
| 280 tests | 81%+ coverage |
๐ฌ Demo

Analyzing logs with 14 specialized tools
๐ค Why?
| Without log-analyzer-mcp | With log-analyzer-mcp |
|---|---|
| Copy-paste chunks of logs | Point Claude at the file |
| Lose context between pastes | Full file access |
| Manual format parsing | Auto-detection |
| Miss related errors | Smart correlation |
โจ Features
- Auto-Detection โ Identifies format from 9+ common log types
- Smart Search โ Pattern matching with context, regex, and time filtering
- Error Extraction โ Groups similar errors, captures stack traces
- Natural Language โ Ask questions like "what errors happened today?"
- Sensitive Data Scan โ Detect PII, credentials, and secrets
- Multi-File Analysis โ Correlate events across distributed systems
- Streaming โ Handles 1GB+ files without memory issues
๐ Quick Start
# Install (adds to Claude Code automatically)
uvx codesdevs-log-analyzer install
Then in Claude Code:
Analyze /var/log/app.log and tell me what's causing the errors
๐ฆ Installation
One-liner (Recommended)
uvx codesdevs-log-analyzer install
Manual
<details> <summary>pip / uv / Claude Code config</summary>
# pip
pip install codesdevs-log-analyzer
# uv
uv tool install codesdevs-log-analyzer
Add to ~/.claude/settings.json:
{
"mcpServers": {
"log-analyzer": {
"command": "uvx",
"args": ["codesdevs-log-analyzer"]
}
}
}
</details>
๐ Supported Formats
| Format | Example |
|---|---|
| Syslog | Jan 15 10:30:00 hostname process[pid]: message |
| Apache/Nginx | 127.0.0.1 - - [15/Jan/2026:10:30:00] "GET /path" 200 |
| JSON Lines | {"timestamp": "...", "level": "ERROR", "message": "..."} |
| Docker | 2026-01-15T10:30:00.123Z stdout message |
| Python | 2026-01-15 10:30:00,123 - module - ERROR - message |
| Java/Log4j | 2026-01-15 10:30:00,123 ERROR [thread] class - message |
| Kubernetes | level=error msg="..." ts=2026-01-15T10:30:00Z |
| Generic | Any line with recognizable timestamp |
โก Performance
| Metric | Value |
|---|---|
| 100MB log file | < 10 seconds |
| Memory footprint | Streaming (no full load) |
| Max tested size | 1GB+ |
| Format detection | < 100ms |
๐ ๏ธ Available Tools
| Tool | Description |
|---|---|
log_analyzer_parse |
Detect format and extract metadata |
log_analyzer_search |
Search with context lines |
log_analyzer_extract_errors |
Extract and group errors |
log_analyzer_summarize |
Generate debugging summary |
log_analyzer_correlate |
Find related events |
log_analyzer_watch |
Monitor for new entries |
log_analyzer_ask |
Natural language queries |
log_analyzer_scan_sensitive |
Detect PII/credentials |
| + 6 more | Full reference โ |
๐ก Examples
Find errors:
Extract all errors from /var/log/app.log, group similar ones
Search with context:
Search for "timeout" in app.log with 5 lines of context
Correlate events:
What happened 60 seconds before each OutOfMemoryError?
Scan for secrets:
Check /var/log/app.log for accidentally logged credentials
๐ง Development
git clone https://github.com/Fato07/log-analyzer-mcp
cd log-analyzer-mcp
uv sync
uv run pytest -v --cov
๐ Star History
๐ License
MIT License - see LICENSE for details.
<p align="center"> <b>Found this useful?</b> Give it a โญ on GitHub!<br><br> <a href="https://github.com/Fato07/log-analyzer-mcp/issues/new?template=bug_report.yml">Report bugs</a> ยท <a href="https://github.com/Fato07/log-analyzer-mcp/issues/new?template=feature_request.yml">Request features</a> ยท <a href="https://github.com/Fato07/log-analyzer-mcp/discussions">Discussions</a> ยท <a href="https://github.com/Fato07/log-analyzer-mcp/blob/main/docs/TOOLS.md">Full docs</a> </p>
<p align="center"> Built by <a href="https://github.com/Fato07">Fato07</a> at <a href="https://codesdevs.io">CodesDevs</a> </p>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.