Locust MCP Server

Locust MCP Server

A server that integrates Locust load testing capabilities with AI-powered development environments, allowing users to run performance tests through natural language commands.

Category
Visit Server

README

🚀 ⚡️ locust-mcp-server

A Model Context Protocol (MCP) server implementation for running Locust load tests. This server enables seamless integration of Locust load testing capabilities with AI-powered development environments.

✨ Features

  • Simple integration with Model Context Protocol framework
  • Support for headless and UI modes
  • Configurable test parameters (users, spawn rate, runtime)
  • Easy-to-use API for running Locust load tests
  • Real-time test execution output
  • HTTP/HTTPS protocol support out of the box
  • Custom task scenarios support

Locust-MCP-Server

🔧 Prerequisites

Before you begin, ensure you have the following installed:

📦 Installation

  1. Clone the repository:
git clone https://github.com/qainsights/locust-mcp-server.git
  1. Install the required dependencies:
uv pip install -r requirements.txt
  1. Set up environment variables (optional): Create a .env file in the project root:
LOCUST_HOST=http://localhost:8089  # Default host for your tests
LOCUST_USERS=3                     # Default number of users
LOCUST_SPAWN_RATE=1               # Default user spawn rate
LOCUST_RUN_TIME=10s               # Default test duration

🚀 Getting Started

  1. Create a Locust test script (e.g., hello.py):
from locust import HttpUser, task, between

class QuickstartUser(HttpUser):
    wait_time = between(1, 5)

    @task
    def hello_world(self):
        self.client.get("/hello")
        self.client.get("/world")

    @task(3)
    def view_items(self):
        for item_id in range(10):
            self.client.get(f"/item?id={item_id}", name="/item")
            time.sleep(1)

    def on_start(self):
        self.client.post("/login", json={"username":"foo", "password":"bar"})
  1. Configure the MCP server using the below specs in your favorite MCP client (Claude Desktop, Cursor, Windsurf and more):
{
  "mcpServers": {
    "locust": {
      "command": "/Users/naveenkumar/.local/bin/uv",
      "args": [
        "--directory",
        "/Users/naveenkumar/Gits/locust-mcp-server",
        "run",
        "locust_server.py"
      ]
    }
  }
}
  1. Now ask the LLM to run the test e.g. run locust test for hello.py. The Locust MCP server will use the following tool to start the test:
  • run_locust: Run a test with configurable options for headless mode, host, runtime, users, and spawn rate

📝 API Reference

Run Locust Test

run_locust(
    test_file: str,
    headless: bool = True,
    host: str = "http://localhost:8089",
    runtime: str = "10s",
    users: int = 3,
    spawn_rate: int = 1
)

Parameters:

  • test_file: Path to your Locust test script
  • headless: Run in headless mode (True) or with UI (False)
  • host: Target host to load test
  • runtime: Test duration (e.g., "30s", "1m", "5m")
  • users: Number of concurrent users to simulate
  • spawn_rate: Rate at which users are spawned

✨ Use Cases

  • LLM powered results analysis
  • Effective debugging with the help of LLM

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured