Local Mem0 MCP Server

Local Mem0 MCP Server

A fully self-hosted MCP server that integrates the Mem0 framework to provide persistent memory capabilities for AI assistants using local models and vector storage. It enables users to store, search, and manage contextual information across conversations through a Docker-based deployment.

Category
Visit Server

README

Local Mem0 MCP Server

A fully self-hosted Model Context Protocol (MCP) server that integrates Mem0 for persistent memory capabilities. Enables AI assistants like Claude to store and retrieve contextual information across conversations.

✨ Features

  • 🧠 Persistent Memory: Store and retrieve memories across conversations
  • šŸ”’ Fully Self-Hosted: No external APIs or cloud dependencies
  • 🐳 Containerized: Complete Docker deployment with one command
  • šŸš€ Easy Installation: Single script setup for Windows, Mac, and Linux
  • šŸ¤– Local AI Models: Uses Ollama with phi3:mini and nomic-embed-text
  • šŸ“Š Vector Storage: PostgreSQL with pgvector for efficient memory search
  • šŸ”Œ MCP Compatible: Works with Claude Desktop and other MCP-capable AI tools

šŸš€ Quick Start

Prerequisites

Installation

Windows:

git clone https://github.com/Synapse-OS/local-mem0-mcp.git
cd local-mem0-mcp
install.bat

Mac/Linux:

git clone https://github.com/Synapse-OS/local-mem0-mcp.git
cd local-mem0-mcp
chmod +x install.sh
./install.sh

The installation will:

  1. Build the MCP server container
  2. Start PostgreSQL and Ollama services
  3. Download AI models (~2.5GB total)
  4. Configure Claude Desktop integration
  5. Test the installation

Testing

After installation and configuration:

  1. Restart Claude Desktop completely (close and reopen)
  2. Verify MCP server: Type /mcp - should list mem0-local as available
  3. Test memory storage: "Remember that I'm testing the MCP memory system today"
  4. Test memory retrieval: "What do you remember about me?"
  5. Verify persistence: Restart Claude Desktop and ask again - memories should persist

Troubleshooting MCP Connection:

  • If /mcp shows no servers, check the configuration file path and JSON syntax
  • Ensure Docker containers are running: docker ps
  • Check MCP server logs: docker logs mem0-mcp-server

šŸ—ļø Architecture

ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”    ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”    ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
│   Claude        │    │   MCP Server     │    │   PostgreSQL    │
│   Desktop       │◄──►│   (FastMCP)      │◄──►│   + pgvector    │
ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜    ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜    ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜
                                │
                                ā–¼
                       ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
                       │     Ollama       │
                       │   phi3:mini +    │
                       │ nomic-embed-text │
                       ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

šŸ”§ Configuration

Claude Desktop MCP Configuration

After installation, configure Claude Desktop to use the MCP server:

Windows: Edit %APPDATA%\Claude\claude_desktop_config.json:

Mac: Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

Linux: Edit ~/.config/Claude/claude_desktop_config.json:

Add this configuration:

{
  "mcpServers": {
    "mem0-local": {
      "command": "docker",
      "args": [
        "exec", "-i", "mem0-mcp-server",
        "python", "/app/src/server.py"
      ]
    }
  }
}

System Configuration

The system is configured for local operation by default:

  • MCP Server: Runs in Docker container with STDIO transport
  • Database: PostgreSQL with pgvector on port 5432
  • AI Models: Local Ollama instance on port 11434
  • Memory Storage: User-isolated memories with vector embeddings

šŸ“‹ Available Memory Operations

  • add_memory: Store new memories
  • search_memories: Find relevant memories by query
  • get_all_memories: Retrieve all memories for a user
  • update_memory: Modify existing memories
  • delete_memory: Remove specific memories
  • delete_all_memories: Clear all memories for a user
  • get_memory_stats: Get memory statistics

šŸ” Troubleshooting

Check services:

docker ps

View logs:

docker-compose -f docker-compose.local.yml logs

Restart services:

docker-compose -f docker-compose.local.yml restart

Clean restart:

docker-compose -f docker-compose.local.yml down -v
# Run install script again

šŸ¤ Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ™ Acknowledgments

  • Mem0 - Memory management framework
  • FastMCP - MCP server implementation
  • Ollama - Local AI model inference
  • pgvector - Vector similarity search

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured