Local DeepWiki MCP Server
Generates DeepWiki-style documentation for private code repositories with RAG-based Q\&A capabilities, semantic code search, and multi-language AST parsing. Supports local LLMs (Ollama) or cloud providers for privacy-focused codebase analysis.
README
Local DeepWiki MCP Server
A local, privacy-focused MCP server that generates DeepWiki-style documentation for private repositories with RAG-based Q&A capabilities.
Features
- Multi-language code parsing using tree-sitter (Python, TypeScript/JavaScript, Go, Rust, Java, C/C++, Swift, Ruby, PHP, Kotlin, C#)
- AST-based chunking that respects code structure (functions, classes, methods)
- Semantic search using LanceDB vector database
- LLM-powered wiki generation with support for Ollama (local), Anthropic, and OpenAI
- Configurable embeddings - local (sentence-transformers) or OpenAI
- Incremental indexing - only re-process changed files
- RAG-based Q&A - ask questions about your codebase
- Deep Research mode - multi-step reasoning for complex architectural questions
- Web UI - browse generated wiki in your browser
- Export to HTML - generate static HTML site for sharing
- Export to PDF - generate printable PDF documentation with mermaid diagrams
Installation
Using uv (recommended)
cd local-deepwiki-mcp
uv sync
Using pip
cd local-deepwiki-mcp
pip install -e .
Configuration
Create a config file at ~/.config/local-deepwiki/config.yaml:
embedding:
provider: "local" # or "openai"
local:
model: "all-MiniLM-L6-v2"
openai:
model: "text-embedding-3-small"
llm:
provider: "ollama" # or "anthropic" or "openai"
ollama:
model: "llama3.2"
base_url: "http://localhost:11434"
anthropic:
model: "claude-sonnet-4-20250514"
openai:
model: "gpt-4o"
parsing:
languages:
- python
- typescript
- javascript
- go
- rust
- java
- c
- cpp
max_file_size: 1048576
exclude_patterns:
- "node_modules/**"
- "venv/**"
- ".git/**"
chunking:
max_chunk_tokens: 512
overlap_tokens: 50
output:
wiki_dir: ".deepwiki"
vector_db_name: "vectors.lance"
Claude Code Integration
Add to your Claude Code MCP config (~/.claude/claude_code_config.json):
{
"mcpServers": {
"local-deepwiki": {
"command": "uv",
"args": ["run", "--directory", "/path/to/local-deepwiki-mcp", "local-deepwiki"],
"env": {
"ANTHROPIC_API_KEY": "${ANTHROPIC_API_KEY}",
"OPENAI_API_KEY": "${OPENAI_API_KEY}"
}
}
}
}
MCP Tools
index_repository
Index a repository and generate wiki documentation.
{
"repo_path": "/path/to/repo",
"full_rebuild": false,
"llm_provider": "ollama",
"embedding_provider": "local"
}
ask_question
Ask a question about the codebase using RAG.
{
"repo_path": "/path/to/repo",
"question": "How does the authentication system work?",
"max_context": 5
}
deep_research
Perform deep research on complex architectural questions using multi-step reasoning. Unlike ask_question (single retrieval), this performs query decomposition, parallel retrieval, gap analysis, and comprehensive synthesis.
{
"repo_path": "/path/to/repo",
"question": "How does the authentication system interact with the database layer?",
"max_chunks": 30
}
Returns a detailed answer with:
- Sub-questions that were investigated
- Source references with file paths and line numbers
- Reasoning trace showing each step's duration
- Comprehensive answer with citations
Best for questions like:
- "How does data flow from API to database?"
- "What would break if we change the auth module?"
- "How are these services coupled?"
read_wiki_structure
Get the wiki table of contents.
{
"wiki_path": "/path/to/repo/.deepwiki"
}
read_wiki_page
Read a specific wiki page.
{
"wiki_path": "/path/to/repo/.deepwiki",
"page": "modules/auth.md"
}
search_code
Semantic search across the codebase.
{
"repo_path": "/path/to/repo",
"query": "user authentication",
"limit": 10,
"language": "python"
}
export_wiki_html
Export wiki to a static HTML site.
{
"wiki_path": "/path/to/repo/.deepwiki",
"output_path": "./html-export"
}
export_wiki_pdf
Export wiki to PDF format.
{
"wiki_path": "/path/to/repo/.deepwiki",
"output_path": "./documentation.pdf",
"single_file": true
}
CLI Commands
# Run the MCP server
uv run local-deepwiki
# Serve the wiki with web UI
uv run deepwiki-serve .deepwiki --port 8080
# Watch mode - auto-reindex on file changes
uv run deepwiki-watch /path/to/repo
# Export wiki to static HTML
uv run deepwiki-export .deepwiki --output ./html-export
# Export wiki to PDF (single file)
uv run deepwiki-export-pdf .deepwiki -o documentation.pdf
# Export each page as separate PDF
uv run deepwiki-export-pdf .deepwiki --separate -o ./pdfs/
Environment Variables
ANTHROPIC_API_KEY- Required for Anthropic LLM providerOPENAI_API_KEY- Required for OpenAI LLM/embedding providers
Prerequisites
For local LLM support:
- Ollama installed and running
- A model pulled (e.g.,
ollama pull llama3.2)
For PDF export:
- System libraries:
pango,cairo,gdk-pixbuf(WeasyPrint dependencies)- macOS:
brew install pango - Ubuntu/Debian:
apt install libpango-1.0-0 libpangocairo-1.0-0
- macOS:
- Optional for mermaid diagrams:
npm install -g @mermaid-js/mermaid-cli
Troubleshooting
Ollama Connection Errors
If you see "Failed to connect to Ollama":
- Ensure Ollama is running:
ollama serve - Verify the model is pulled:
ollama list - Check if the default URL works:
curl http://localhost:11434/api/tags - If using a custom port, update
config.yamlwith the correctbase_url
PDF Export Fails
"pango not found" or similar Cairo/Pango errors:
- macOS:
brew install pango cairo gdk-pixbuf - Ubuntu/Debian:
apt install libpango-1.0-0 libpangocairo-1.0-0 libgdk-pixbuf2.0-0 - Fedora:
dnf install pango cairo gdk-pixbuf2
Mermaid diagrams not rendering in PDF:
- Install mermaid-cli:
npm install -g @mermaid-js/mermaid-cli - Verify with:
mmdc --version - Without mermaid-cli, diagrams show as code blocks
Memory Issues on Large Repositories
For repositories with 100k+ lines of code:
- Increase batch size limits in config if you have more RAM
- Use
full_rebuild: falsefor incremental updates after initial indexing - Consider excluding large generated files via
exclude_patternsin config
LLM Quality Issues
If wiki content has hallucinations or low quality:
- Switch from Ollama to Anthropic or OpenAI for better results
- Try a larger local model (e.g.,
qwen3-coder:30binstead ofllama3.2) - Ensure source files are properly parsed (check supported languages)
Web UI Not Loading
- Check if port 8080 is in use:
lsof -i :8080 - Try a different port:
uv run deepwiki-serve .deepwiki --port 8081 - Ensure
.deepwikidirectory exists and contains generated wiki
Development
# Install dev dependencies
uv sync --extra dev
# Run tests
pytest
# Run the server directly
uv run local-deepwiki
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ MCP Server (FastMCP) │
├─────────────────────────────────────────────────────────────────┤
│ Tools: │
│ - index_repository - Generate wiki + embeddings │
│ - ask_question - RAG Q&A about codebase │
│ - deep_research - Multi-step reasoning for complex Q&A │
│ - read_wiki_structure - Get wiki table of contents │
│ - read_wiki_page - Read specific wiki page │
│ - search_code - Semantic code search │
│ - export_wiki_html - Export wiki to static HTML │
│ - export_wiki_pdf - Export wiki to PDF format │
└─────────────────────────────────────────────────────────────────┘
│ │ │
▼ ▼ ▼
┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐
│ Tree-sitter │ │ LanceDB │ │ LLM Provider │
│ (Code Parsing) │ │ (Vector Store) │ │ (Doc Generation) │
└──────────────────┘ └──────────────────┘ └──────────────────┘
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.