llm-token-tracker
Token usage tracker for OpenAI and Claude APIs with MCP (Model Context Protocol) support.
README
LLM Token Tracker 🧮
Token usage tracker for OpenAI and Claude APIs with MCP (Model Context Protocol) support. Pass accurate API costs to your users.
✨ Features
- 🎯 Simple Integration - One line to wrap your API client
- 📊 Automatic Tracking - No manual token counting
- 💰 Accurate Pricing - Up-to-date pricing for all models (2025)
- 🔄 Multiple Providers - OpenAI and Claude support
- 📈 User Management - Track usage per user/session
- 🌐 Currency Support - USD and KRW
- 🤖 MCP Server - Use directly in Claude Desktop!
- 🆕 Intuitive Session Tracking - Real-time usage with progress bars
📦 Installation
npm install llm-token-tracker
🚀 Quick Start
Option 1: Use as Library
const { TokenTracker } = require('llm-token-tracker');
// or import { TokenTracker } from 'llm-token-tracker';
// Initialize tracker
const tracker = new TokenTracker({
currency: 'USD' // or 'KRW'
});
// Example: Manual tracking
const trackingId = tracker.startTracking('user-123');
// ... your API call here ...
tracker.endTracking(trackingId, {
provider: 'openai',
model: 'gpt-3.5-turbo',
inputTokens: 100,
outputTokens: 50,
totalTokens: 150
});
// Get user's usage
const usage = tracker.getUserUsage('user-123');
console.log(`Total cost: $${usage.totalCost}`);
🔧 With Real APIs
To use with actual OpenAI/Anthropic APIs:
const OpenAI = require('openai');
const { TokenTracker } = require('llm-token-tracker');
const tracker = new TokenTracker();
const openai = tracker.wrap(new OpenAI({
apiKey: process.env.OPENAI_API_KEY
}));
// Use normally - tracking happens automatically
const response = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: [{ role: "user", content: "Hello!" }]
});
console.log(response._tokenUsage);
// { tokens: 125, cost: 0.0002, model: "gpt-3.5-turbo" }
Option 2: Use as MCP Server
Add to Claude Desktop settings (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"token-tracker": {
"command": "npx",
"args": ["llm-token-tracker"]
}
}
}
Then in Claude:
- "Calculate current session usage" - See current session usage with intuitive format
- "Calculate current conversation cost" - Get cost breakdown with input/output tokens
- "Track my API usage"
- "Compare costs between GPT-4 and Claude"
- "Show my total spending today"
Available MCP Tools
-
get_current_session- 🆕 Get current session usage (RECOMMENDED)- Returns: Used/Remaining tokens, Input/Output breakdown, Cost, Progress bar
- Default user_id:
current-session - Default budget: 190,000 tokens
- Perfect for real-time conversation tracking!
-
track_usage- Track token usage for an AI API call- Parameters: provider, model, input_tokens, output_tokens, user_id
-
get_usage- Get usage summary for specific user or all users -
compare_costs- Compare costs between different models -
clear_usage- Clear usage data for a user
Example MCP Output
💰 Current Session
━━━━━━━━━━━━━━━━━━━━━━
📊 Used: 62,830 tokens (33.1%)
✨ Remaining: 127,170 tokens
[██████░░░░░░░░░░░░░░]
📥 Input: 55,000 tokens
📤 Output: 7,830 tokens
💵 Cost: $0.2825
━━━━━━━━━━━━━━━━━━━━━━
📋 Model Breakdown:
• anthropic/claude-sonnet-4.5: 62,830 tokens ($0.2825)
📊 Supported Models & Pricing (Updated 2025)
OpenAI (2025)
| Model | Input (per 1K tokens) | Output (per 1K tokens) | Notes |
|---|---|---|---|
| GPT-5 Series | |||
| GPT-5 | $0.00125 | $0.010 | Latest flagship model |
| GPT-5 Mini | $0.00025 | $0.0010 | Compact version |
| GPT-4.1 Series | |||
| GPT-4.1 | $0.0020 | $0.008 | Advanced reasoning |
| GPT-4.1 Mini | $0.00015 | $0.0006 | Cost-effective |
| GPT-4o Series | |||
| GPT-4o | $0.0025 | $0.010 | Multimodal |
| GPT-4o Mini | $0.00015 | $0.0006 | Fast & cheap |
| o1 Reasoning Series | |||
| o1 | $0.015 | $0.060 | Advanced reasoning |
| o1 Mini | $0.0011 | $0.0044 | Efficient reasoning |
| o1 Pro | $0.015 | $0.060 | Pro reasoning |
| Legacy Models | |||
| GPT-4 Turbo | $0.01 | $0.03 | |
| GPT-4 | $0.03 | $0.06 | |
| GPT-3.5 Turbo | $0.0005 | $0.0015 | Most affordable |
| Media Models | |||
| DALL-E 3 | $0.040 per image | - | Image generation |
| Whisper | $0.006 per minute | - | Speech-to-text |
Anthropic (2025)
| Model | Input (per 1K tokens) | Output (per 1K tokens) | Notes |
|---|---|---|---|
| Claude 4 Series | |||
| Claude Opus 4.1 | $0.015 | $0.075 | Most powerful |
| Claude Opus 4 | $0.015 | $0.075 | Flagship model |
| Claude Sonnet 4.5 | $0.003 | $0.015 | Best for coding |
| Claude Sonnet 4 | $0.003 | $0.015 | Balanced |
| Claude 3 Series | |||
| Claude 3.5 Sonnet | $0.003 | $0.015 | |
| Claude 3.5 Haiku | $0.00025 | $0.00125 | Fastest |
| Claude 3 Opus | $0.015 | $0.075 | |
| Claude 3 Sonnet | $0.003 | $0.015 | |
| Claude 3 Haiku | $0.00025 | $0.00125 | Most affordable |
Note: Prices shown are per 1,000 tokens. Batch API offers 50% discount. Prompt caching can reduce costs by up to 90%.
🎯 Examples
Run the example:
npm run example
Check examples/basic-usage.js for detailed usage patterns.
📝 API Reference
new TokenTracker(config)
config.currency: 'USD' or 'KRW' (default: 'USD')config.webhookUrl: Optional webhook for usage notifications
tracker.wrap(client)
Wrap an OpenAI or Anthropic client for automatic tracking.
tracker.forUser(userId)
Create a user-specific tracker instance.
tracker.startTracking(userId?, sessionId?)
Start manual tracking session. Returns tracking ID.
tracker.endTracking(trackingId, usage)
End tracking and record usage.
tracker.getUserUsage(userId)
Get total usage for a user.
tracker.getAllUsersUsage()
Get usage summary for all users.
🛠 Development
# Install dependencies
npm install
# Build TypeScript
npm run build
# Watch mode
npm run dev
# Run examples
npm run example
📄 License
MIT
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
🐛 Issues
For bugs and feature requests, please create an issue.
📦 What's New in v2.3.0
- 💱 Real-time exchange rates - Automatic USD to KRW conversion
- 🌐 Uses exchangerate-api.com for accurate rates
- 💾 24-hour caching to minimize API calls
- 📊 New
get_exchange_ratetool to check current rates - 🔄 Background auto-updates with fallback support
What's New in v2.2.0
- 🗄️ File-based persistence - Session data survives server restarts
- 💾 Automatic saving to
~/.llm-token-tracker/sessions.json - 🔄 Works for both npm and local installations
- 📊 Historical data tracking across sessions
- 🎯 Zero configuration required - just works!
What's New in v2.1.0
- 🆕 Added
get_current_sessiontool for intuitive session tracking - 📊 Real-time progress bars and visual indicators
- 💰 Enhanced cost breakdown with input/output token separation
- 🎨 Improved formatting with thousands separators
- 🔧 Better default user_id handling (
current-session)
Built with ❤️ for developers who need transparent AI API billing.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.