llm-token-tracker

llm-token-tracker

Token usage tracker for OpenAI and Claude APIs with MCP (Model Context Protocol) support.

Category
Visit Server

README

LLM Token Tracker 🧮

Token usage tracker for OpenAI and Claude APIs with MCP (Model Context Protocol) support. Pass accurate API costs to your users.

npm version License: MIT

✨ Features

  • 🎯 Simple Integration - One line to wrap your API client
  • 📊 Automatic Tracking - No manual token counting
  • 💰 Accurate Pricing - Up-to-date pricing for all models (2025)
  • 🔄 Multiple Providers - OpenAI and Claude support
  • 📈 User Management - Track usage per user/session
  • 🌐 Currency Support - USD and KRW
  • 🤖 MCP Server - Use directly in Claude Desktop!
  • 🆕 Intuitive Session Tracking - Real-time usage with progress bars

📦 Installation

npm install llm-token-tracker

🚀 Quick Start

Option 1: Use as Library

const { TokenTracker } = require('llm-token-tracker');
// or import { TokenTracker } from 'llm-token-tracker';

// Initialize tracker
const tracker = new TokenTracker({
  currency: 'USD' // or 'KRW'
});

// Example: Manual tracking
const trackingId = tracker.startTracking('user-123');

// ... your API call here ...

tracker.endTracking(trackingId, {
  provider: 'openai',
  model: 'gpt-3.5-turbo',
  inputTokens: 100,
  outputTokens: 50,
  totalTokens: 150
});

// Get user's usage
const usage = tracker.getUserUsage('user-123');
console.log(`Total cost: $${usage.totalCost}`);

🔧 With Real APIs

To use with actual OpenAI/Anthropic APIs:

const OpenAI = require('openai');
const { TokenTracker } = require('llm-token-tracker');

const tracker = new TokenTracker();
const openai = tracker.wrap(new OpenAI({
  apiKey: process.env.OPENAI_API_KEY
}));

// Use normally - tracking happens automatically
const response = await openai.chat.completions.create({
  model: "gpt-3.5-turbo",
  messages: [{ role: "user", content: "Hello!" }]
});

console.log(response._tokenUsage);
// { tokens: 125, cost: 0.0002, model: "gpt-3.5-turbo" }

Option 2: Use as MCP Server

Add to Claude Desktop settings (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "token-tracker": {
      "command": "npx",
      "args": ["llm-token-tracker"]
    }
  }
}

Then in Claude:

  • "Calculate current session usage" - See current session usage with intuitive format
  • "Calculate current conversation cost" - Get cost breakdown with input/output tokens
  • "Track my API usage"
  • "Compare costs between GPT-4 and Claude"
  • "Show my total spending today"

Available MCP Tools

  1. get_current_session - 🆕 Get current session usage (RECOMMENDED)

    • Returns: Used/Remaining tokens, Input/Output breakdown, Cost, Progress bar
    • Default user_id: current-session
    • Default budget: 190,000 tokens
    • Perfect for real-time conversation tracking!
  2. track_usage - Track token usage for an AI API call

    • Parameters: provider, model, input_tokens, output_tokens, user_id
  3. get_usage - Get usage summary for specific user or all users

  4. compare_costs - Compare costs between different models

  5. clear_usage - Clear usage data for a user

Example MCP Output

💰 Current Session
━━━━━━━━━━━━━━━━━━━━━━
📊 Used: 62,830 tokens (33.1%)
✨ Remaining: 127,170 tokens
[██████░░░░░░░░░░░░░░]

📥 Input: 55,000 tokens
📤 Output: 7,830 tokens
💵 Cost: $0.2825
━━━━━━━━━━━━━━━━━━━━━━

📋 Model Breakdown:
  • anthropic/claude-sonnet-4.5: 62,830 tokens ($0.2825)

📊 Supported Models & Pricing (Updated 2025)

OpenAI (2025)

Model Input (per 1K tokens) Output (per 1K tokens) Notes
GPT-5 Series
GPT-5 $0.00125 $0.010 Latest flagship model
GPT-5 Mini $0.00025 $0.0010 Compact version
GPT-4.1 Series
GPT-4.1 $0.0020 $0.008 Advanced reasoning
GPT-4.1 Mini $0.00015 $0.0006 Cost-effective
GPT-4o Series
GPT-4o $0.0025 $0.010 Multimodal
GPT-4o Mini $0.00015 $0.0006 Fast & cheap
o1 Reasoning Series
o1 $0.015 $0.060 Advanced reasoning
o1 Mini $0.0011 $0.0044 Efficient reasoning
o1 Pro $0.015 $0.060 Pro reasoning
Legacy Models
GPT-4 Turbo $0.01 $0.03
GPT-4 $0.03 $0.06
GPT-3.5 Turbo $0.0005 $0.0015 Most affordable
Media Models
DALL-E 3 $0.040 per image - Image generation
Whisper $0.006 per minute - Speech-to-text

Anthropic (2025)

Model Input (per 1K tokens) Output (per 1K tokens) Notes
Claude 4 Series
Claude Opus 4.1 $0.015 $0.075 Most powerful
Claude Opus 4 $0.015 $0.075 Flagship model
Claude Sonnet 4.5 $0.003 $0.015 Best for coding
Claude Sonnet 4 $0.003 $0.015 Balanced
Claude 3 Series
Claude 3.5 Sonnet $0.003 $0.015
Claude 3.5 Haiku $0.00025 $0.00125 Fastest
Claude 3 Opus $0.015 $0.075
Claude 3 Sonnet $0.003 $0.015
Claude 3 Haiku $0.00025 $0.00125 Most affordable

Note: Prices shown are per 1,000 tokens. Batch API offers 50% discount. Prompt caching can reduce costs by up to 90%.

🎯 Examples

Run the example:

npm run example

Check examples/basic-usage.js for detailed usage patterns.

📝 API Reference

new TokenTracker(config)

  • config.currency: 'USD' or 'KRW' (default: 'USD')
  • config.webhookUrl: Optional webhook for usage notifications

tracker.wrap(client)

Wrap an OpenAI or Anthropic client for automatic tracking.

tracker.forUser(userId)

Create a user-specific tracker instance.

tracker.startTracking(userId?, sessionId?)

Start manual tracking session. Returns tracking ID.

tracker.endTracking(trackingId, usage)

End tracking and record usage.

tracker.getUserUsage(userId)

Get total usage for a user.

tracker.getAllUsersUsage()

Get usage summary for all users.

🛠 Development

# Install dependencies
npm install

# Build TypeScript
npm run build

# Watch mode
npm run dev

# Run examples
npm run example

📄 License

MIT

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

🐛 Issues

For bugs and feature requests, please create an issue.

📦 What's New in v2.3.0

  • 💱 Real-time exchange rates - Automatic USD to KRW conversion
  • 🌐 Uses exchangerate-api.com for accurate rates
  • 💾 24-hour caching to minimize API calls
  • 📊 New get_exchange_rate tool to check current rates
  • 🔄 Background auto-updates with fallback support

What's New in v2.2.0

  • 🗄️ File-based persistence - Session data survives server restarts
  • 💾 Automatic saving to ~/.llm-token-tracker/sessions.json
  • 🔄 Works for both npm and local installations
  • 📊 Historical data tracking across sessions
  • 🎯 Zero configuration required - just works!

What's New in v2.1.0

  • 🆕 Added get_current_session tool for intuitive session tracking
  • 📊 Real-time progress bars and visual indicators
  • 💰 Enhanced cost breakdown with input/output token separation
  • 🎨 Improved formatting with thousands separators
  • 🔧 Better default user_id handling (current-session)

Built with ❤️ for developers who need transparent AI API billing.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured