LLM MCP Bridge

LLM MCP Bridge

Provides a universal bridge to interact with any OpenAI-compatible LLM API (local or cloud), enabling model testing, benchmarking, quality evaluation, and chat operations with performance metrics.

Category
Visit Server

README

LLM MCP Bridge 🌉

Un servidor MCP (Model Context Protocol) agnóstico para cualquier API compatible con OpenAI. Permite analizar y evaluar la calidad de modelos LLM.

🎯 Proveedores Soportados

Cualquier servidor que implemente la OpenAI API:

Proveedor URL Base Típica
LM Studio http://localhost:1234/v1
Ollama http://localhost:11434/v1
vLLM http://localhost:8000/v1
LocalAI http://localhost:8080/v1
llama.cpp http://localhost:8080/v1
OpenAI https://api.openai.com/v1
Azure OpenAI https://{resource}.openai.azure.com/
Together.ai https://api.together.xyz/v1
Groq https://api.groq.com/openai/v1
Anyscale https://api.endpoints.anyscale.com/v1

🛠️ Herramientas MCP Disponibles

Herramienta Descripción
llm_get_models Obtiene lista de modelos (JSON)
llm_status Verifica conexión con el servidor
llm_list_models Lista modelos (formato legible)
llm_chat Chat con métricas de rendimiento
llm_benchmark Benchmark con múltiples prompts
llm_evaluate_coherence Evalúa consistencia del modelo
llm_test_capabilities Test en diferentes áreas
llm_compare_models Compara múltiples modelos
llm_quality_report Reporte completo de calidad

Parámetros Configurables en Chat

Todas las herramientas aceptan baseURL y apiKey opcionales para override de conexión.

Parámetro Descripción Default
prompt Texto a enviar al modelo requerido
model ID del modelo modelo por defecto
maxTokens Máximo de tokens 512
temperature Temperatura (0-2) 0.7
topP Nucleus sampling (0-1) -
topK Top K sampling -
repeatPenalty Penalización repetición -
presencePenalty Penalización presencia -
frequencyPenalty Penalización frecuencia -
stop Secuencias de parada -
systemPrompt Prompt de sistema -

📋 Requisitos

  • Node.js >= 18
  • Un servidor LLM con API compatible con OpenAI

🚀 Instalación

cd llm-mcp-bridge
npm install
npm run build

⚙️ Configuración en VS Code

Añade a tu archivo mcp.json de VS Code:

LM Studio (local)

{
  "servers": {
    "llm-local": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "http://localhost:1234/v1"
      }
    }
  }
}

Ollama

{
  "servers": {
    "ollama": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "http://localhost:11434/v1"
      }
    }
  }
}

OpenAI

{
  "servers": {
    "openai": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "https://api.openai.com/v1",
        "LLM_API_KEY": "sk-..."
      }
    }
  }
}

Groq

{
  "servers": {
    "groq": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "https://api.groq.com/openai/v1",
        "LLM_API_KEY": "gsk_..."
      }
    }
  }
}

Múltiples proveedores

{
  "servers": {
    "llm-lmstudio": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "http://localhost:1234/v1"
      }
    },
    "llm-ollama": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "http://localhost:11434/v1"
      }
    },
    "llm-openai": {
      "type": "stdio",
      "command": "node",
      "args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
      "env": {
        "LLM_BASE_URL": "https://api.openai.com/v1",
        "LLM_API_KEY": "sk-..."
      }
    }
  }
}

🔧 Variables de Entorno

Variable Descripción Default
LLM_BASE_URL URL del servidor LLM http://localhost:1234/v1
LLM_API_KEY API Key (requerida para servicios cloud) -

📖 Ejemplos de Uso

Verificar conexión

@llm_status

Obtener modelos (JSON)

@llm_get_models

Chat con métricas

@llm_chat prompt="Explica qué es machine learning" temperature=0.5 maxTokens=256

Chat con otro servidor (override)

@llm_chat prompt="Hola" baseURL="http://localhost:11434/v1"

Benchmark

@llm_benchmark prompts=["Hola", "¿Qué hora es?", "Cuenta hasta 10"]

Reporte de calidad

@llm_quality_report

Comparar modelos

@llm_compare_models prompt="Escribe un haiku sobre la luna"

🏗️ Estructura del Proyecto

llm-mcp-bridge/
├── src/
│   ├── index.ts       # Servidor MCP principal
│   ├── llm-client.ts  # Cliente OpenAI-compatible
│   └── tools.ts       # Definiciones de herramientas MCP
├── dist/              # Código compilado
├── package.json
├── tsconfig.json
└── README.md

📊 Métricas de Calidad

El servidor analiza:

  • Latencia: Tiempo total de respuesta (ms)
  • Tokens/segundo: Velocidad de generación
  • Coherencia: Consistencia entre múltiples ejecuciones
  • Capacidades: Rendimiento en diferentes tipos de tareas
    • Razonamiento
    • Programación
    • Creatividad
    • Conocimiento factual
    • Seguir instrucciones

🤝 Contribuir

¡Las contribuciones son bienvenidas! Abre un issue o pull request.

📄 Licencia

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured