LLM MCP Bridge
Provides a universal bridge to interact with any OpenAI-compatible LLM API (local or cloud), enabling model testing, benchmarking, quality evaluation, and chat operations with performance metrics.
README
LLM MCP Bridge 🌉
Un servidor MCP (Model Context Protocol) agnóstico para cualquier API compatible con OpenAI. Permite analizar y evaluar la calidad de modelos LLM.
🎯 Proveedores Soportados
Cualquier servidor que implemente la OpenAI API:
| Proveedor | URL Base Típica |
|---|---|
| LM Studio | http://localhost:1234/v1 |
| Ollama | http://localhost:11434/v1 |
| vLLM | http://localhost:8000/v1 |
| LocalAI | http://localhost:8080/v1 |
| llama.cpp | http://localhost:8080/v1 |
| OpenAI | https://api.openai.com/v1 |
| Azure OpenAI | https://{resource}.openai.azure.com/ |
| Together.ai | https://api.together.xyz/v1 |
| Groq | https://api.groq.com/openai/v1 |
| Anyscale | https://api.endpoints.anyscale.com/v1 |
🛠️ Herramientas MCP Disponibles
| Herramienta | Descripción |
|---|---|
llm_get_models |
Obtiene lista de modelos (JSON) |
llm_status |
Verifica conexión con el servidor |
llm_list_models |
Lista modelos (formato legible) |
llm_chat |
Chat con métricas de rendimiento |
llm_benchmark |
Benchmark con múltiples prompts |
llm_evaluate_coherence |
Evalúa consistencia del modelo |
llm_test_capabilities |
Test en diferentes áreas |
llm_compare_models |
Compara múltiples modelos |
llm_quality_report |
Reporte completo de calidad |
Parámetros Configurables en Chat
Todas las herramientas aceptan baseURL y apiKey opcionales para override de conexión.
| Parámetro | Descripción | Default |
|---|---|---|
prompt |
Texto a enviar al modelo | requerido |
model |
ID del modelo | modelo por defecto |
maxTokens |
Máximo de tokens | 512 |
temperature |
Temperatura (0-2) | 0.7 |
topP |
Nucleus sampling (0-1) | - |
topK |
Top K sampling | - |
repeatPenalty |
Penalización repetición | - |
presencePenalty |
Penalización presencia | - |
frequencyPenalty |
Penalización frecuencia | - |
stop |
Secuencias de parada | - |
systemPrompt |
Prompt de sistema | - |
📋 Requisitos
- Node.js >= 18
- Un servidor LLM con API compatible con OpenAI
🚀 Instalación
cd llm-mcp-bridge
npm install
npm run build
⚙️ Configuración en VS Code
Añade a tu archivo mcp.json de VS Code:
LM Studio (local)
{
"servers": {
"llm-local": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "http://localhost:1234/v1"
}
}
}
}
Ollama
{
"servers": {
"ollama": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "http://localhost:11434/v1"
}
}
}
}
OpenAI
{
"servers": {
"openai": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "https://api.openai.com/v1",
"LLM_API_KEY": "sk-..."
}
}
}
}
Groq
{
"servers": {
"groq": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "https://api.groq.com/openai/v1",
"LLM_API_KEY": "gsk_..."
}
}
}
}
Múltiples proveedores
{
"servers": {
"llm-lmstudio": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "http://localhost:1234/v1"
}
},
"llm-ollama": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "http://localhost:11434/v1"
}
},
"llm-openai": {
"type": "stdio",
"command": "node",
"args": ["/ruta/a/llm-mcp-bridge/dist/index.js"],
"env": {
"LLM_BASE_URL": "https://api.openai.com/v1",
"LLM_API_KEY": "sk-..."
}
}
}
}
🔧 Variables de Entorno
| Variable | Descripción | Default |
|---|---|---|
LLM_BASE_URL |
URL del servidor LLM | http://localhost:1234/v1 |
LLM_API_KEY |
API Key (requerida para servicios cloud) | - |
📖 Ejemplos de Uso
Verificar conexión
@llm_status
Obtener modelos (JSON)
@llm_get_models
Chat con métricas
@llm_chat prompt="Explica qué es machine learning" temperature=0.5 maxTokens=256
Chat con otro servidor (override)
@llm_chat prompt="Hola" baseURL="http://localhost:11434/v1"
Benchmark
@llm_benchmark prompts=["Hola", "¿Qué hora es?", "Cuenta hasta 10"]
Reporte de calidad
@llm_quality_report
Comparar modelos
@llm_compare_models prompt="Escribe un haiku sobre la luna"
🏗️ Estructura del Proyecto
llm-mcp-bridge/
├── src/
│ ├── index.ts # Servidor MCP principal
│ ├── llm-client.ts # Cliente OpenAI-compatible
│ └── tools.ts # Definiciones de herramientas MCP
├── dist/ # Código compilado
├── package.json
├── tsconfig.json
└── README.md
📊 Métricas de Calidad
El servidor analiza:
- Latencia: Tiempo total de respuesta (ms)
- Tokens/segundo: Velocidad de generación
- Coherencia: Consistencia entre múltiples ejecuciones
- Capacidades: Rendimiento en diferentes tipos de tareas
- Razonamiento
- Programación
- Creatividad
- Conocimiento factual
- Seguir instrucciones
🤝 Contribuir
¡Las contribuciones son bienvenidas! Abre un issue o pull request.
📄 Licencia
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.