Llama Maverick Hub MCP Server

Llama Maverick Hub MCP Server

A meta-MCP server that uses Llama AI as an orchestrator to intelligently route requests and coordinate workflows across multiple MCP services like Stripe, GitHub, and databases. Enables complex multi-service operations with AI-driven decision making and parallel execution capabilities.

Category
Visit Server

README

Llama Maverick Hub MCP Server

Author: Yobie Benjamin
Version: 0.2
Date: July 28, 2025

Overview

The Llama Maverick Hub MCP Server is a revolutionary orchestration platform that positions Llama Maverick as the central AI brain connecting to and coordinating multiple MCP-enabled services. Unlike traditional MCP servers that provide tools to AI models, this hub makes Llama the orchestrator that intelligently manages and routes requests across multiple MCP services like Stripe, GitHub, databases, and more.

Key Innovation

This is a Meta-MCP Server that acts as both:

  • MCP Server: Exposes unified tools to Claude Desktop or other MCP clients
  • MCP Client: Connects to multiple external MCP services (Stripe, GitHub, etc.)
  • AI Orchestrator: Uses Llama Maverick to make intelligent routing and workflow decisions

Architecture

┌─────────────────┐
│  Claude Desktop │
│   (MCP Client)  │
└────────┬────────┘
         │ MCP Protocol
         ▼
┌─────────────────────────────────────┐
│    Llama Maverick Hub MCP Server    │
│  ┌─────────────────────────────┐    │
│  │   Llama Maverick AI Brain   │    │
│  │  (Orchestration & Routing)  │    │
│  └─────────────────────────────┘    │
│           │         │         │      │
│    ┌──────▼───┬────▼───┬────▼───┐  │
│    │ Service  │ Service│ Service│  │
│    │ Registry │ Router │ Manager│  │
│    └──────────┴────────┴────────┘  │
└─────────┬──────────┬──────────┬────┘
          │          │          │
     MCP Protocol  MCP      MCP Protocol
          │       Protocol      │
          ▼          ▼          ▼
    ┌──────────┐ ┌──────┐ ┌──────────┐
    │  Stripe  │ │GitHub│ │ Database │
    │   MCP    │ │ MCP  │ │   MCP    │
    └──────────┘ └──────┘ └──────────┘

Features

🧠 AI-Driven Orchestration

  • Intelligent Routing: Llama analyzes requests and routes to the best service
  • Workflow Planning: AI designs multi-step workflows across services
  • Error Recovery: Smart error analysis and retry strategies
  • Result Synthesis: Combines results from multiple services intelligently

🔗 Multi-Service Integration

  • Service Discovery: Automatic discovery of MCP service capabilities
  • Unified Tool Access: Single interface to tools from all connected services
  • Parallel Execution: Query multiple services simultaneously
  • Service Health Monitoring: Track availability and performance

🔄 Advanced Workflows

  • Multi-Step Operations: Chain operations across different services
  • Dependency Management: Handle complex step dependencies
  • Context Passing: Share data between workflow steps
  • Retry Policies: Configurable retry strategies per step

🎯 Real-World Integrations

  • Stripe MCP: Complete payment workflows with orchestration
  • GitHub MCP: Repository management with AI assistance
  • Database MCP: Data operations with intelligent queries
  • Custom Services: Easy integration of any MCP service

Installation

Prerequisites

  1. Node.js 18+ and npm
  2. Ollama with Llama model installed
  3. Claude Desktop (for MCP client)
  4. MCP Services you want to connect (e.g., Stripe MCP)

Quick Start

# Clone the repository
git clone https://github.com/yobieben/llama-maverick-hub-mcp.git
cd llama-maverick-hub-mcp

# Install dependencies
npm install

# Build the project
npm run build

# Configure services (edit config.json)
cp config.example.json config.json

# Start the hub server
npm start

Installing Ollama and Llama

# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh

# Pull Llama model
ollama pull llama3.2

# Verify installation
ollama list

Configuration

Basic Configuration (config.json)

{
  "hub": {
    "name": "llama-maverick-hub",
    "version": "0.2.0",
    "port": 8080,
    "logLevel": "info"
  },
  "llama": {
    "model": "llama3.2",
    "baseUrl": "http://localhost:11434",
    "contextWindow": 8192,
    "defaultTemperature": 0.7
  },
  "services": [
    {
      "id": "stripe",
      "name": "Stripe MCP",
      "description": "Stripe payment processing",
      "transport": "stdio",
      "endpoint": "stripe-mcp",
      "enabled": true,
      "command": "npx",
      "args": ["-y", "@stripe/mcp-server"],
      "reconnectPolicy": {
        "maxRetries": 5,
        "retryDelayMs": 5000,
        "backoffMultiplier": 2
      }
    },
    {
      "id": "github",
      "name": "GitHub MCP",
      "description": "GitHub repository management",
      "transport": "stdio",
      "endpoint": "github-mcp",
      "enabled": true,
      "command": "github-mcp-server",
      "args": ["--token", "${GITHUB_TOKEN}"]
    }
  ],
  "orchestration": {
    "maxConcurrentOperations": 10,
    "defaultTimeout": 30000,
    "retryPolicy": {
      "maxRetries": 3,
      "retryDelayMs": 1000
    }
  }
}

Claude Desktop Configuration

Add to your Claude Desktop config:

{
  "mcpServers": {
    "llama-hub": {
      "command": "node",
      "args": ["/path/to/llama-maverick-hub-mcp/dist/index.js"],
      "env": {
        "LLAMA_HUB_LOG_LEVEL": "info",
        "STRIPE_API_KEY": "your_stripe_key",
        "GITHUB_TOKEN": "your_github_token"
      }
    }
  }
}

Environment Variables

# Hub Configuration
LLAMA_HUB_NAME=llama-maverick-hub
LLAMA_HUB_PORT=8080
LLAMA_HUB_LOG_LEVEL=debug

# Llama Configuration
LLAMA_HUB_LLAMA_MODEL=llama3.2
LLAMA_HUB_LLAMA_BASE_URL=http://localhost:11434

# Service Configuration
LLAMA_HUB_SERVICE_STRIPE_ENABLED=true
LLAMA_HUB_SERVICE_STRIPE_COMMAND=npx
LLAMA_HUB_SERVICE_GITHUB_ENABLED=true

# Security
LLAMA_HUB_ENABLE_AUTH=false
LLAMA_HUB_API_KEYS=key1,key2

Usage Examples

Basic Tool Execution

When you interact with Claude Desktop, you can now access tools from all connected services:

User: "Create a new Stripe customer and set up a subscription"

Claude uses: stripe_create_customer, stripe_create_subscription
Hub routes to: Stripe MCP service
Llama assists: Validates data, handles errors

Intelligent Routing

User: "Process a payment for this customer"

Llama analyzes:
- Customer location
- Payment amount
- Risk factors

Llama decides:
- Route to Stripe for low-risk
- Route to fraud service for high-risk
- Use alternative processor for specific regions

Multi-Service Workflows

User: "Onboard a new customer with payment"

Hub executes workflow:
1. Create Stripe customer
2. Set up payment method
3. Create subscription
4. Store in database
5. Send welcome email
6. Update analytics

All orchestrated by Llama Maverick!

Parallel Service Queries

User: "Get customer information from all systems"

Hub queries simultaneously:
- Stripe for payment data
- Database for profile
- Analytics for behavior
- Support for tickets

Llama synthesizes comprehensive report

Advanced Features

Custom Workflows

Create complex multi-service workflows:

orchestrator.registerWorkflow({
  id: 'customer-lifecycle',
  name: 'Complete Customer Lifecycle',
  description: 'Onboard, activate, and monitor customer',
  steps: [
    {
      id: 'stripe-setup',
      service: 'stripe',
      tool: 'create_customer',
      arguments: { /* ... */ }
    },
    {
      id: 'database-store',
      service: 'database',
      tool: 'insert_record',
      arguments: { /* ... */ },
      dependsOn: ['stripe-setup']
    },
    {
      id: 'email-welcome',
      service: 'email',
      tool: 'send_email',
      arguments: { /* ... */ },
      dependsOn: ['database-store']
    }
  ]
});

AI-Powered Decision Making

Llama Maverick makes intelligent decisions:

// Llama analyzes request and determines best approach
const routing = await llamaService.analyzeRouting(
  userRequest,
  availableServices
);

// Llama plans multi-step workflow
const workflow = await llamaService.planWorkflow(
  goal,
  services,
  tools
);

// Llama synthesizes results from multiple sources
const summary = await llamaService.synthesizeResults(
  serviceResults,
  originalRequest
);

Service Health Monitoring

Automatic failover and recovery:

// Registry tracks service health
registry.on('service:unhealthy', (service) => {
  // Llama determines fallback strategy
  const fallback = llamaService.determineFallback(service);
  
  // Route to alternative service
  orchestrator.reroute(service, fallback);
});

Real-World Use Cases

1. E-Commerce Platform

Workflow: Complete Order Processing
- Validate inventory (Database MCP)
- Process payment (Stripe MCP)
- Update inventory (Database MCP)
- Create shipping label (Shipping MCP)
- Send confirmation (Email MCP)
- Update analytics (Analytics MCP)

2. SaaS Subscription Management

Workflow: Subscription Lifecycle
- Create customer (Stripe MCP)
- Provision resources (Cloud MCP)
- Set up monitoring (Monitoring MCP)
- Configure billing (Stripe MCP)
- Send onboarding (Email MCP)

3. Financial Services

Workflow: Loan Application
- Credit check (Credit MCP)
- Risk assessment (Risk MCP)
- Document verification (Document MCP)
- Approval workflow (Workflow MCP)
- Fund disbursement (Banking MCP)

4. Developer Tools

Workflow: CI/CD Pipeline
- Code analysis (GitHub MCP)
- Run tests (Testing MCP)
- Build artifacts (Build MCP)
- Deploy to cloud (Cloud MCP)
- Update monitoring (Monitoring MCP)

API Reference

Hub Tools

hub_execute_workflow

Execute a predefined multi-service workflow.

{
  "name": "hub_execute_workflow",
  "arguments": {
    "workflowId": "customer-onboarding",
    "parameters": {
      "email": "customer@example.com",
      "plan": "premium"
    }
  }
}

hub_smart_route

Use Llama AI to intelligently route requests.

{
  "name": "hub_smart_route",
  "arguments": {
    "query": "Process payment for high-risk customer",
    "context": {
      "amount": 1000,
      "currency": "USD",
      "risk_score": 85
    }
  }
}

hub_parallel_query

Query multiple services in parallel.

{
  "name": "hub_parallel_query",
  "arguments": {
    "services": ["stripe", "database", "analytics"],
    "query": "Get customer profile"
  }
}

Service Tools

All tools from connected services are available with service prefix:

  • stripe_create_customer
  • stripe_create_charge
  • github_create_repo
  • github_create_issue
  • database_query
  • database_insert

Development

Project Structure

llama-maverick-hub-mcp/
├── src/
│   ├── index.ts                 # Main server entry point
│   ├── orchestrator/
│   │   └── hub-orchestrator.ts  # Core orchestration logic
│   ├── registry/
│   │   └── service-registry.ts  # Service management
│   ├── clients/
│   │   └── mcp-client-manager.ts # MCP client connections
│   ├── services/
│   │   └── llama-service.ts     # Llama AI integration
│   ├── config/
│   │   └── config-manager.ts    # Configuration management
│   └── integrations/
│       └── stripe-integration.ts # Stripe-specific workflows
├── config.json                   # Hub configuration
├── package.json                  # Node.js dependencies
├── tsconfig.json                 # TypeScript configuration
└── README.md                     # This file

Adding New Services

  1. Define Service Configuration:
{
  "id": "myservice",
  "name": "My Service MCP",
  "transport": "stdio",
  "command": "my-service-mcp",
  "enabled": true
}
  1. Create Integration Module (optional):
export class MyServiceIntegration {
  registerWorkflows() {
    // Define service-specific workflows
  }
}
  1. Register with Hub:
const integration = new MyServiceIntegration(orchestrator);
integration.registerWorkflows();

Testing

# Run tests
npm test

# Run specific test
npm test -- --grep "orchestrator"

# Test with coverage
npm run test:coverage

Debugging

Enable debug logging:

export LLAMA_HUB_LOG_LEVEL=debug
npm start

View service connections:

# Check service status
curl http://localhost:8080/status

# View service registry
curl http://localhost:8080/services

Monitoring

Metrics

The hub exposes metrics for monitoring:

  • Service availability
  • Request latency
  • Workflow execution time
  • Error rates
  • Llama inference time

Health Checks

# Hub health
curl http://localhost:8080/health

# Service health
curl http://localhost:8080/health/stripe

Logging

Structured logging with Winston:

logger.info('Workflow executed', {
  workflowId: 'customer-onboarding',
  duration: 1234,
  steps: 6,
  success: true
});

Troubleshooting

Common Issues

Llama Connection Failed

Error: Failed to connect to Ollama
Solution: Ensure Ollama is running: ollama serve

Service Not Connecting

Error: Failed to connect to service: stripe
Solution: Check service command and arguments in config

Workflow Timeout

Error: Workflow execution timeout
Solution: Increase timeout in orchestration config

Debug Mode

Enable verbose logging:

// In code
logger.level = 'debug';

// Via environment
LLAMA_HUB_LOG_LEVEL=debug npm start

Security

Best Practices

  1. API Key Management: Use environment variables for sensitive keys
  2. Service Isolation: Run services in separate processes
  3. Rate Limiting: Configure per-service rate limits
  4. Audit Logging: Log all workflow executions
  5. Error Handling: Never expose internal errors to clients

Authentication

Enable authentication in config:

{
  "security": {
    "enableAuth": true,
    "apiKeys": ["key1", "key2"]
  }
}

Performance

Optimization Tips

  1. Cache Service Discoveries: Reduce repeated capability queries
  2. Parallel Execution: Use hub_parallel_query for multi-service operations
  3. Connection Pooling: Reuse MCP client connections
  4. Workflow Optimization: Minimize step dependencies
  5. Llama Tuning: Adjust temperature for faster inference

Benchmarks

Typical performance metrics:

  • Service connection: < 100ms
  • Tool execution: < 500ms
  • Workflow step: < 1s
  • Llama inference: < 2s
  • Full workflow: < 10s

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Areas for Contribution

  • New service integrations
  • Workflow templates
  • Performance optimizations
  • Documentation improvements
  • Test coverage

License

MIT License - see LICENSE file

Support

Acknowledgments

  • Anthropic for the MCP protocol
  • Meta for Llama models
  • Ollama for local model hosting
  • Stripe for payment MCP example
  • The open-source community

Built with ❤️ by Yobie Benjamin
Orchestrating the future of AI-driven service integration

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured