Libragen

Libragen

Creates and searches private, local RAG libraries from documentation to ground AI assistants in authoritative sources, reducing hallucinations by providing current, accurate context from your own docs instead of relying on outdated training data.

Category
Visit Server

README

<p align="center"> <img src="packages/website/public/favicon.svg" alt="Libragen Logo" width="80" height="80"> </p>

<h1 align="center">libragen</h1>

<p align="center"> <em>(pronounced "LIB-ruh-jen")</em> </p>

<p align="center"> <strong>Stop your AI from hallucinating code, and ground it in your actual documentation</strong> </p>

<p align="center"> <a href="https://www.npmjs.com/package/@libragen/cli"><img src="https://img.shields.io/npm/v/@libragen/cli.svg?label=cli" alt="npm cli"></a> <a href="https://www.npmjs.com/package/@libragen/core"><img src="https://img.shields.io/npm/v/@libragen/core.svg?label=core" alt="npm core"></a> <a href="https://www.npmjs.com/package/@libragen/mcp"><img src="https://img.shields.io/npm/v/@libragen/mcp.svg?label=mcp" alt="npm mcp"></a> <a href="https://github.com/libragen/libragen/actions"><img src="https://github.com/libragen/libragen/actions/workflows/ci.yml/badge.svg" alt="CI"></a> <a href="https://github.com/libragen/libragen/blob/main/LICENSE"><img src="https://img.shields.io/badge/license-MIT-blue.svg" alt="License"></a> </p>

<p align="center"> <a href="https://libragen.dev">Documentation</a> β€’ <a href="https://libragen.dev/docs/getting-started">Getting Started</a> β€’ <a href="https://github.com/libragen/libragen/discussions">Discussions</a> </p>


Create private, local RAG libraries that ground your AI in real documentationβ€”not 2-year-old training data. No cloud, no API keys, just single files you can share with your whole team.

What's RAG? Retrieval-Augmented Generation lets AI retrieve relevant context before responding, instead of relying solely on training data. libragen packages your docs into searchable libraries your AI can query.

🎯 Why libragen?

  • Ground AI in truth β€” Give your coding agents authoritative docs to cite, dramatically reducing hallucinations
  • Always current β€” Rebuild libraries when docs change; your AI gets the latest APIs, not stale training data
  • Private & local β€” Everything runs on your machine. No API keys, no cloud bills, no data leaving your network
  • Shareable β€” Single .libragen files work anywhere. Share via git, S3, or install from curated collections

✨ Features

  • οΏ½ Hybrid Search β€” Combines vector similarity with BM25 keyword matching
  • πŸ“Š Reranking β€” Optional cross-encoder reranking for improved relevance
  • πŸ“¦ Portable β€” Single-file SQLite databases with embedded vectors
  • 🧠 Smart Chunking β€” Language-aware splitting that respects code boundaries
  • 🌐 Multiple Sources β€” Build from local files or git repositories
  • πŸ€– MCP Native β€” Works directly in Claude Desktop, VS Code, and any MCP client

πŸ“¦ Packages

Package Description
@libragen/core Core library for embedding, chunking, storage
@libragen/cli Command-line interface for building and querying
@libragen/mcp Model Context Protocol server for AI assistants

πŸš€ Quick Start

Installation

npm install -g @libragen/cli

Build a Library

# From your internal docs
libragen build ./internal-api-docs --name internal-api

# From a private git repository
libragen build https://github.com/your-org/private-docs -o company-docs.libragen

# From any public repo
libragen build https://github.com/facebook/react -o react.libragen

Query a Library

libragen query "how to authenticate users" -l my-project.libragen

Use with AI Assistants

Install the MCP server globally:

npm install -g @libragen/mcp

Add to your Claude Desktop config (on macOS: ~/Library/Application Support/Claude/claude_desktop_config.json):

{
   "mcpServers": {
      "libragen": {
         "command": "npx",
         "args": ["-y", "@libragen/mcp"]
      }
   }
}

Then install libraries to make them available:

libragen install my-project.libragen

οΏ½ CLI Commands

Command Description
build <source> Build a library from files or git repo
query <query> Search a library for relevant content
info <library> Display library metadata
list List installed libraries and collections
install <source> Install a library or collection
uninstall <name> Remove an installed library or collection
update [name] Update installed libraries to newer versions
collection create Create a collection file
config Display configuration and paths
completions <action> Manage shell completions (bash, zsh, fish)

πŸ“š Collections

Collections are JSON files that group libraries together for easy installation:

{
   "name": "my-stack",
   "description": "Libraries for my project",
   "version": "1.0.0",
   "items": [
      { "library": "https://example.com/react.libragen" },
      { "library": "https://example.com/typescript.libragen" },
      { "library": "https://example.com/testing.libragen", "required": false },
      { "collection": "https://example.com/base-web.json" }
   ]
}

Create a collection:

# Initialize a template
libragen collection init my-stack.json

# Or create with libraries directly
libragen collection create my-stack.json \
   -l ./react.libragen \
   -l ./typescript.libragen \
   -o ./testing.libragen

Install a collection:

libragen install ./my-stack.json        # Required libraries only
libragen install ./my-stack.json --all  # Include optional libraries

Collections support:

  • Nesting β€” Collections can include other collections
  • Deduplication β€” Libraries are only installed once
  • Optional items β€” Mark libraries as "required": false
  • Reference counting β€” Uninstalling removes only unreferenced libraries

βš™οΈ Configuration

Storage Location

By default, libragen stores libraries and configuration in a platform-specific directory:

Platform Default Location
macOS ~/Library/Application Support/libragen
Windows %APPDATA%\libragen
Linux $XDG_DATA_HOME/libragen (defaults to ~/.local/share/libragen)

Override this by setting the LIBRAGEN_HOME environment variable:

export LIBRAGEN_HOME=/custom/path/to/libragen

The directory structure is:

$LIBRAGEN_HOME/
  libraries/       # Installed .libragen files
  manifest.json    # Tracks installed libraries and collections
  collections.json # Collection configuration
  cache/           # Cached collection indexes

πŸ“„ Library Format

A .libragen file is a SQLite database containing:

  • Metadata β€” Library name, version, description, embedding model info
  • Chunks β€” Code/documentation segments with source file info
  • Embeddings β€” Vector representations using Xenova/bge-small-en-v1.5 (384 dims)
  • FTS Index β€” Full-text search index for keyword matching

πŸ“– Programmatic Usage

Use @libragen/core directly in your TypeScript/JavaScript projects:

import { Library, Searcher, Embedder, Reranker } from '@libragen/core';

// Open an existing library and search it
const library = await Library.open('./my-docs.libragen');

const embedder = new Embedder();
await embedder.initialize();

const reranker = new Reranker();
await reranker.initialize();

const searcher = new Searcher(embedder, library.getStore(), { reranker });

const results = await searcher.search({
   query: 'how do I authenticate?',
   k: 5,
   rerank: true,  // Use cross-encoder reranking
});

for (const result of results) {
   console.log(`[${result.score.toFixed(3)}] ${result.sourceFile}`);
   console.log(result.content);
}

await library.close();
import { Builder } from '@libragen/core';

// Build a library from source files
const builder = new Builder();
const result = await builder.build('./docs', {
   name: 'my-docs',
   description: 'Internal API documentation',
   include: ['**/*.md', '**/*.mdx'],
});

console.log(`Built ${result.outputPath} with ${result.stats.chunkCount} chunks`);

πŸ› οΈ Development

# Install dependencies
npm install

# Run tests
npm test

# Run linting
npm run standards

# Build all packages
npm run build

πŸ—οΈ Architecture

@libragen/cli (build, query, install, manage)
        β”‚
        β–Ό
@libragen/core
  β”œβ”€β”€ Embedder (bge-small-en-v1.5)
  β”œβ”€β”€ Chunker (language-aware splitting)
  β”œβ”€β”€ VectorStore (SQLite + sqlite-vec + FTS5)
  β”œβ”€β”€ Searcher (hybrid search with RRF)
  β”œβ”€β”€ Reranker (mxbai-rerank-xsmall-v1)
  β”œβ”€β”€ Library (create/open/validate)
  β”œβ”€β”€ LibraryManager (install/uninstall/update)
  β”œβ”€β”€ Manifest (tracks installations)
  β”œβ”€β”€ CollectionResolver (nested collections)
  └── Sources (FileSource, GitSource)
        β”‚
        β–Ό
@libragen/mcp (MCP server for AI assistants)
  Tools: libragen_search, libragen_list, libragen_build,
         libragen_install, libragen_uninstall, libragen_update,
         libragen_collection

πŸ™ Acknowledgments

libragen uses the following open-source models:

If you use libragen in academic work, please cite the underlying models:

@misc{bge_embedding,
   title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
   author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
   year={2023},
   eprint={2309.07597},
   archivePrefix={arXiv},
   primaryClass={cs.CL}
}

@online{rerank2024mxbai,
   title={Boost Your Search With The Crispy Mixedbread Rerank Models},
   author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
   year={2024},
   url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
}

πŸ“œ License

MIT β€” see LICENSE for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured