Lenses MCP Server
Manage, explore, transform and join data in Kafka topics across multiple clusters using different flavours of Apache Kafka via Lenses.io (including the free Community Edition)
README
🌊🔍 Lenses MCP Server 🔎🌊
This is the MCP (Model Context Protocol) server for Lenses, a self-service DataOps tool for engineers building real-time applications with different flavours of Apache Kafka across multiple clusters. Explore, transform and join data in topics from different clusters using SQL, without the need for an additional database.
Try this with the free Lenses Community Edition (restricted by number of users and enterprise features, e.g. OAuth). Requires Lenses v6+.
Table of Contents
- 1. Install uv and Python
- 2. Configure Environment Variables
- 3. Add Lenses API Key
- 4. Install Dependencies and Run the Server
- 5. Optional Context7 MCP Server
- 6. Running with Docker
1. Install uv and Python
We use uv for dependency management and project setup. If you don't have uv installed, follow the official installation guide.
This project has been built using Python 3.12 and to make sure Python is correctly installed, run the following command to check the version.
uv run python --version
2. Configure Environment Variables
Copy the example environment file.
cp .env.example .env
Open .env and fill in the required values such as your Lenses instance details and Lenses API key.
3. Add Lenses API Key
Create a Lenses API key by creating an IAM Service Account. Add the API key to .env with the variable name, LENSES_API_KEY.
4. Install Dependencies and Run the Server
Use uv to create a virtual environment, install the project dependencies in it and then run the MCP server with the FastMCP CLI using the default stdio transport.
uv sync
uv run src/lenses_mcp/server.py
To run as a remote server, use the http transport.
uv run fastmcp run src/lenses_mcp/server.py --transport=http --port=8000
To run in Claude Desktop, Gemini CLI, Cursor, etc. use the following JSON configuration.
{
"mcpServers": {
"Lenses.io": {
"command": "uv",
"args": [
"run",
"--project", "<ABSOLUTE_PATH_TO_THIS_REPO>",
"--with", "fastmcp",
"fastmcp",
"run",
"<ABSOLUTE_PATH_TO_THIS_REPO>/src/lenses_mcp/server.py"
],
"env": {
"LENSES_API_KEY": "<YOUR_LENSES_API_KEY>"
},
"transport": "stdio"
}
}
}
Note: Some clients may require the absolute path to uv in the command.
5. Optional Context7 MCP Server
Lenses documentation is available on Context7. It is optional but highly recommended to use the Context7 MCP Server and adjust your prompts with use context7 to ensure the documentation available to the LLM is up to date.
6. Running with Docker
The Lenses MCP server is available as a Docker image at lensesio/mcp. You can run it with different transport modes depending on your use case.
Quick Start
Run the server with stdio transport (default):
docker run \
-e LENSES_API_KEY=<YOUR_API_KEY> \
-e LENSES_URL=http://localhost:9991 \
lensesio/mcp
Run the server with HTTP transport (listens on http://0.0.0.0:8000/mcp):
docker run -p 8000:8000 \
-e LENSES_API_KEY=<YOUR_API_KEY> \
-e LENSES_URL=http://localhost:9991 \
-e TRANSPORT=http \
lensesio/mcp
Run the server with SSE transport (listens on http://0.0.0.0:8000/sse):
docker run -p 8000:8000 \
-e LENSES_API_KEY=<YOUR_API_KEY> \
-e LENSES_URL=http://localhost:9991 \
-e TRANSPORT=sse \
lensesio/mcp
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
LENSES_API_KEY |
Yes | - | Your Lenses API key (create via IAM Service Account) |
LENSES_URL |
No | http://localhost:9991 |
Lenses instance URL in format [scheme]://[host]:[port]. Use https:// for secure connections (automatically uses wss:// for WebSockets) |
TRANSPORT |
No | stdio |
Transport mode: stdio, http, or sse |
PORT |
No | 8000 |
Port to listen on (only used with http or sse transport) |
Legacy environment variables (for backward compatibility):
LENSES_API_HTTP_URL,LENSES_API_HTTP_PORTLENSES_API_WEBSOCKET_URL,LENSES_API_WEBSOCKET_PORT
These are automatically derived from LENSES_URL but can be explicitly set to override.
Transport Endpoints
- stdio: Standard input/output (no network endpoint)
- http: HTTP endpoint at
/mcp - sse: Server-Sent Events endpoint at
/sse
Building the Docker Image
To build the Docker image locally:
docker build -t lensesio/mcp .
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.