Leave Manager MCP Tool Server

Leave Manager MCP Tool Server

A centralized employee leave management system that allows users to check leave balances, apply for leave, and view leave history through an OpenAPI interface.

Category
Visit Server

README

Local AI with Ollama, WebUI & MCP on Windows

A self-hosted AI stack combining Ollama for running language models, Open WebUI for user-friendly chat interaction, and MCP for centralized model management—offering full control, privacy, and flexibility without relying on the cloud.

This sample project provides an MCP-based tool server for managing employee leave balance, applications, and history. It is exposed via OpenAPI using mcpo for easy integration with Open WebUI or other OpenAPI-compatible clients.


🚀 Features

  • ✅ Check employee leave balance
  • 📆 Apply for leave on specific dates
  • 📜 View leave history
  • 🙋 Personalized greeting functionality

📁 Project Structure

leave-manager/
├── main.py                  # MCP server logic for leave management
├── requirements.txt         # Python dependencies for the MCP server
├── Dockerfile               # Docker image configuration for the leave manager
├── docker-compose.yml       # Docker Compose file to run leave manager and Open WebUI
└── README.md                # Project documentation (this file)

📋 Prerequisites

  1. Windows 10 or later (required for Ollama)
  2. Docker Desktop for Windows (required for Open WebUI and MCP)

🛠️ Workflow

  1. Install Ollama on Windows
  2. Pull the deepseek-r1 model
  3. Clone the repository and navigate to the project directory
  4. Run the docker-compose.yml file to launch services

Install Ollama

➤ Windows

  1. Download the Installer:

  2. Run the Installer:

    • Execute OllamaSetup.exe and follow the installation prompts.
    • After installation, Ollama runs as a background service, accessible at: http://localhost:11434.
    • Verify in your browser; you should see:
      Ollama is running
      

    Ollama Initial Window Ollama Setup Progress Ollama In System Tray Ollama On Browser

  3. Start Ollama Server (if not already running):

    ollama serve
    

Verify Installation

Check the installed version of Ollama:

ollama --version

Expected Output:

ollama version 0.7.1

Pull the deepseek-r1 Model

1. Pull the Default Model (7B):

Using PoweShell

ollama pull deepseek-r1

deepseek-r1

To Pull Specific Versions:

ollama run deepseek-r1:1.5b
ollama run deepseek-r1:671b

2. List Installed Models:

ollama list

Expected:

Expected Output:

NAME                    ID              SIZE
deepseek-r1:latest      xxxxxxxxxxxx    X.X GB

deepseek-r1:latest

4. Alternative Check via API:

curl http://localhost:11434/api/tags

Expected Output: A JSON response listing installed models, including deepseek-r1:latest.

alternative check

4. Test the API via PowerShell:

Invoke-RestMethod -Uri http://localhost:11434/api/generate -Method Post -Body '{"model": "deepseek-r1", "prompt": "Hello, world!", "stream": false}' -ContentType "application/json"

Expected Response: A JSON object containing the model's response to the "Hello, world!" prompt.

test the API

5. Run and Chat the Model via PowerShell:

ollama run deepseek-r1
  • This opens an interactive chat session with the deepseek-r1 model.
  • Type /bye and press Enter to exit the chat session.

run and chat

run and chat with Hi

exist chat


🐳 Run Open WebUI and MCP Server with Docker Compose

  1. Clone the Repository:

    git clone https://github.com/ahmad-act/Local-AI-with-Ollama-Open-WebUI-MCP-on-Windows.git
    cd Local-AI-with-Ollama-Open-WebUI-MCP-on-Windows
    
  2. To launch both the MCP tool and Open WebUI locally (on Docker Desktop):

    docker-compose up --build
    

    exist chat exist chat exist chat exist chat exist chat exist chat exist chat

This will:


🌐 Add MCP Tools to Open WebUI

The MCP tools are exposed via the OpenAPI specification at: http://localhost:8000/openapi.json.

  1. Open http://localhost:3000 in your browser.
  2. Click the Profile Icon and navigate to Settings. exist chat
  3. Select the Tools menu and click the Add (+) Button. exist chat
  4. Add a new tool by entering the URL: http://localhost:8000/. exist chat exist chat exist chat exist chat exist chat exist chat exist chat

💬 Example Prompts

Use these prompts in Open WebUI to interact with the Leave Manager tool:

  • Check Leave Balance:
    Check how many leave days are left for employee E001
    
    exist chat exist chat
  • Apply for Leave:
    Apply
    ![exist chat](readme-img/add-mcp-tools-on-open-webui-12.png)
    
  • View Leave History:
    What's the leave history of E001?
    
    exist chat
  • Personalized Greeting:
    Greet me as Alice
    
    exist chat

🛠️ Troubleshooting

  • Ollama not running: Ensure the service is active (ollama serve) and check http://localhost:11434.
  • Docker issues: Verify Docker Desktop is running and you have sufficient disk space.
  • Model not found: Confirm the deepseek-r1 model is listed with ollama list.
  • Port conflicts: Ensure ports 11434, 3000, and 8000 are free.

📚 Additional Resources

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured