Layer.ai MCP Server
Enables users to generate and manage 2D game assets like sprites, characters, and backgrounds directly from their development environment using the Layer.ai platform. It supports asset creation with transparency, prompt optimization, and automatic saving of generated files to local project directories.
README
Layer.ai MCP Server
A Model Context Protocol (MCP) server for generating game assets using Layer.ai's AI platform. Generate sprites, characters, backgrounds, and other 2D assets directly from your development environment.
Made with AI - Use with caution
Features
- Asset Generation: Generate 2D game assets using Layer.ai Forge
- Prompt Optimization: Optimize prompts with Layer.ai Prompt Genie
- Usage Tracking: Monitor usage against free tier limits (600 assets)
- Workspace Management: Export and manage workspace data
- Asset Refinement: Refine and modify existing assets
- Auto-Save: Automatically save generated assets to your project
- Error Handling: Robust error handling with automatic retries
- Quota Protection: Prevents exceeding your free tier limit
Installation
Prerequisites
- Python 3.10+ (required for MCP compatibility)
- Git for cloning the repository
- Layer.ai account and API token
Quick Install (Recommended)
# Clone the repository
git clone https://github.com/bahadirbklg/layer-ai-mcp-server.git
cd layer-ai-mcp-server
# Run the installation script
chmod +x install.sh
./install.sh
Manual Installation
# Clone the repository
git clone https://github.com/bahadirbklg/layer-ai-mcp-server.git
cd layer-ai-mcp-server
# Create virtual environment (recommended)
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install --upgrade pip
pip install -r requirements.txt
# Create assets directory
mkdir -p assets
# Set up credentials
python layer-mcp-server/setup.py
Installation Options
- Production:
pip install -r requirements.min.txt(core dependencies only) - Development:
pip install -r requirements.dev.txt(includes testing and linting tools) - Full:
pip install -r requirements.txt(recommended for most users)
Verify Installation
Test your installation to make sure everything is working:
# Run the installation test
python3 verify-install.py
This will check:
- Python version compatibility (3.10+)
- All required dependencies are installed
- Project files are in place
- Main server can be imported successfully
Configuration
Environment Variables
Create a .env file or set environment variables:
# Required: Your Layer.ai API token
LAYER_API_TOKEN=pat_your_token_here
# Optional: API base URL (defaults to https://api.layer.ai)
LAYER_API_BASE_URL=https://api.layer.ai
# Optional: Usage tracking file (defaults to .layer_usage.json)
LAYER_USAGE_FILE=.layer_usage.json
# Optional: Default save directory (defaults to ./assets)
LAYER_DEFAULT_SAVE_DIR=./assets
# Optional: Default workspace ID
LAYER_WORKSPACE_ID=your_workspace_id
Getting Your API Token
- Sign up at Layer.ai
- Go to your account settings
- Generate a new API token (starts with
pat_) - Copy the token to your
.envfile
MCP Client Configuration
For Kiro IDE
Add to your MCP client configuration:
{
"mcpServers": {
"layer-ai-comprehensive": {
"command": "python",
"args": ["layer-mcp-server/server.py"],
"env": {
"LAYER_API_TOKEN": "pat_your_token_here",
"LAYER_WORKSPACE_ID": "your_workspace_id"
},
"disabled": false,
"timeout": 180,
"autoApprove": [
"create_asset", "remove_background", "describe_image",
"generate_prompt", "get_workspace_info"
]
}
}
}
For Claude Desktop
Add to your Claude Desktop MCP configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"layer-ai": {
"command": "python",
"args": ["path/to/layer-mcp-server/server.py"],
"env": {
"LAYER_API_TOKEN": "pat_your_token_here",
"LAYER_WORKSPACE_ID": "your_workspace_id"
}
}
}
}
Usage
Available Tools
1. create_asset - Generate Assets
Generate sprites, characters, backgrounds, and other assets.
Parameters:
prompt(required): Description of the asset to generategeneration_type(optional): CREATE, UPSCALE, etc.width/height(optional): Output dimensions (default: 512x512)quality(optional): LOW, MEDIUM, HIGH (default: HIGH)transparency(optional): Enable transparent backgroundssave_path(optional): Local path to save the asset
Example:
{
"prompt": "A cute pixel art character for a platformer game",
"generation_type": "CREATE",
"width": 512,
"height": 512,
"transparency": true,
"save_path": "./sprites/player_character.png"
}
2. get_workspace_info - Check Status
Get information about your Layer.ai workspace and available features.
3. remove_background - Background Removal (In Development)
Remove backgrounds from existing images using AI.
4. describe_image - Image Analysis (In Development)
Get AI-generated descriptions of images.
5. generate_prompt - Prompt Optimization (In Development)
Optimize your prompts using Layer.ai's Prompt Genie.
Usage Examples
Generate a Game Sprite
# Create a transparent character sprite
create_asset(
prompt="fantasy warrior character, pixel art, 64x64, RPG game",
generation_type="CREATE",
width=64,
height=64,
transparency=True,
save_path="./assets/warrior_sprite.png"
)
Create a Tileable Texture
# Generate seamless stone texture
create_asset(
prompt="medieval stone brick wall, seamless texture",
generation_type="CREATE",
width=256,
height=256,
tileability=True,
save_path="./assets/stone_texture.png"
)
Project Structure
layer-ai-mcp-server/
├── layer-mcp-server/
│ ├── server.py # Main MCP server
│ ├── auth.py # Authentication & token management
│ ├── setup.py # Interactive credential setup
│ ├── api-docs.md # API documentation
│ ├── mcp-config.md # MCP configuration guide
│ ├── security.md # Security documentation
│ └── pyproject.toml # Package configuration
├── assets/ # Generated assets (auto-created)
├── README.md # Main documentation
├── .gitignore # Git ignore patterns
├── requirements.txt # Core dependencies
├── requirements.min.txt # Minimal dependencies
├── requirements.dev.txt # Development dependencies
├── install.sh # Installation script
├── verify-install.py # Installation verification
├── setup.py # Package setup
└── LICENSE # MIT License
Issues & Bug Tracking
Open Issues
High Priority
- [BUG-001] Timeout issues with complex asset generation (>60s)
- Status: RESOLVED (Fixed with 180s timeout in MCP config)
- Solution: Added
"timeout": 180to MCP server configuration - Date: 2025-08-15
Medium Priority
-
[FEATURE-001] Background removal feature not implemented
- Status: IN PROGRESS
- Description:
remove_backgroundtool returns "implementation in progress" - Date: 2025-08-15
-
[FEATURE-002] Image description feature not implemented
- Status: IN PROGRESS
- Description:
describe_imagetool returns "implementation in progress" - Date: 2025-08-15
-
[FEATURE-003] Prompt generation feature not implemented
- Status: IN PROGRESS
- Description:
generate_prompttool returns "implementation in progress" - Date: 2025-08-15
Known Limitations
- Free Tier Limits: 600 assets per month on free tier
- File Size Limits: Large assets (>10MB) may have slower processing
- Network Dependency: Requires stable internet connection for Layer.ai API
- Python Version: Requires Python 3.10+ for full compatibility
Feature Requests
- 3D Asset Generation: Support for generating 3D models and textures
- Animation Support: Generate sprite animations and sequences
- Style Transfer: Apply artistic styles to existing assets
- Bulk Operations: Process multiple assets simultaneously
- Asset Versioning: Track and manage different versions of assets
Troubleshooting
Common Issues
"Invalid API token"
- Check your
.envfile has the correctLAYER_API_TOKEN - Ensure the token starts with
pat_ - Verify the token is valid in your Layer.ai account
"Quota exceeded"
- Check usage with
get_workspace_infotool - You've reached the 600 asset limit for free tier
- Consider upgrading your Layer.ai plan
"Network errors"
- Check your internet connection
- Verify Layer.ai API is accessible
- The server automatically retries failed requests
"MCP connection issues"
- Ensure you're running the server correctly
- Check MCP client configuration
- Review server logs for detailed error messages
"Timeout errors"
- Increase timeout in MCP configuration:
"timeout": 180 - Complex assets may take 30-60 seconds to generate
- Check network stability for long-running operations
"Installation errors"
- Python version: Ensure you have Python 3.10+ (
python3 --version) - Virtual environment: Use a virtual environment to avoid conflicts
- Permissions: On Linux/macOS, you may need
chmod +x install.sh - Dependencies: Try
pip install --upgrade pipbefore installing requirements - MCP compatibility: Some older Python versions may have MCP compatibility issues
"Import errors"
- Missing dependencies: Run
pip install -r requirements.txtagain - Virtual environment: Make sure your virtual environment is activated
- Path issues: Ensure you're running from the correct directory
- Token manager: If token_manager import fails, run the setup script
Issue Reporting Template
When reporting new issues, please use this format:
**[TYPE-###]** Brief description
- **Status**: NEW/IN PROGRESS/RESOLVED
- **Priority**: High/Medium/Low
- **Description**: Detailed description of the issue
- **Steps to Reproduce**:
1. Step one
2. Step two
3. Expected vs actual result
- **Environment**:
- OS: [Windows/macOS/Linux]
- Python version: [3.x.x]
- MCP Client: [Claude Desktop/Other]
- **Date**: YYYY-MM-DD
Issue Types:
BUG- Something is brokenFEATURE- New functionality neededENHANCEMENT- Improvement to existing featureDOCS- Documentation issuePERFORMANCE- Performance problem
Security
This project uses secure credential management:
- AES-256 Encryption: API tokens encrypted at rest
- PBKDF2 Key Derivation: Secure key generation
- File Permissions: Restricted access (600)
- No Version Control Exposure: Credentials never committed
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Submit a pull request
Links
Made with AI - Use with caution
Start generating amazing assets for your projects with Layer.ai!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.