Large File MCP Server
Enables intelligent handling of large files through smart chunking, search with regex support, line navigation, and streaming capabilities without loading entire files into memory.
README
Large File MCP Server
A Model Context Protocol (MCP) server for intelligent handling of large files with smart chunking, navigation, and streaming capabilities.
Features
- Smart Chunking - Automatically determines optimal chunk size based on file type
- Intelligent Navigation - Jump to specific lines with surrounding context
- Powerful Search - Regex support with context lines before/after matches
- File Analysis - Comprehensive metadata and statistical analysis
- Memory Efficient - Stream files of any size without loading into memory
- Performance Optimized - Built-in LRU caching for frequently accessed chunks
- Type Safe - Written in TypeScript with strict typing
- Cross-Platform - Works on Windows, macOS, and Linux
Installation
npm install -g @willianpinho/large-file-mcp
Or use directly with npx:
npx @willianpinho/large-file-mcp
Quick Start
Claude Code CLI
Add the MCP server using the CLI:
# Add for current project only (local scope)
claude mcp add --transport stdio --scope local large-file-mcp -- npx -y @willianpinho/large-file-mcp
# Add globally for all projects (user scope)
claude mcp add --transport stdio --scope user large-file-mcp -- npx -y @willianpinho/large-file-mcp
Verify installation:
claude mcp list
claude mcp get large-file-mcp
Remove if needed:
# Remove from local scope
claude mcp remove large-file-mcp -s local
# Remove from user scope
claude mcp remove large-file-mcp -s user
MCP Scopes:
local- Available only in the current project directoryuser- Available globally for all projectsproject- Defined in.mcp.jsonfor team sharing
Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"large-file": {
"command": "npx",
"args": ["-y", "@willianpinho/large-file-mcp"]
}
}
}
Config file locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Restart Claude Desktop after editing.
Other AI Platforms
Gemini:
{
"tools": [
{
"name": "large-file-mcp",
"command": "npx @willianpinho/large-file-mcp",
"protocol": "mcp"
}
]
}
Usage
Once configured, you can use natural language to interact with large files:
Read the first chunk of /var/log/system.log
Find all ERROR messages in /var/log/app.log
Show me line 1234 of /code/app.ts with context
Get the structure of /data/sales.csv
Available Tools
read_large_file_chunk
Read a specific chunk of a large file with intelligent chunking.
Parameters:
filePath(required): Absolute path to the filechunkIndex(optional): Zero-based chunk index (default: 0)linesPerChunk(optional): Lines per chunk (auto-detected if not provided)includeLineNumbers(optional): Include line numbers (default: false)
Example:
{
"filePath": "/var/log/system.log",
"chunkIndex": 0,
"includeLineNumbers": true
}
search_in_large_file
Search for patterns in large files with context.
Parameters:
filePath(required): Absolute path to the filepattern(required): Search patterncaseSensitive(optional): Case sensitive search (default: false)regex(optional): Use regex pattern (default: false)maxResults(optional): Maximum results (default: 100)contextBefore(optional): Context lines before match (default: 2)contextAfter(optional): Context lines after match (default: 2)
Example:
{
"filePath": "/var/log/error.log",
"pattern": "ERROR.*database",
"regex": true,
"maxResults": 50
}
get_file_structure
Analyze file structure and get comprehensive metadata.
Parameters:
filePath(required): Absolute path to the file
Returns: File metadata, line statistics, recommended chunk size, and sample lines.
navigate_to_line
Jump to a specific line with surrounding context.
Parameters:
filePath(required): Absolute path to the filelineNumber(required): Line number to navigate to (1-indexed)contextLines(optional): Context lines before/after (default: 5)
get_file_summary
Get comprehensive statistical summary of a file.
Parameters:
filePath(required): Absolute path to the file
Returns: File metadata, line statistics, character statistics, and word count.
stream_large_file
Stream a file in chunks for processing very large files.
Parameters:
filePath(required): Absolute path to the filechunkSize(optional): Chunk size in bytes (default: 64KB)startOffset(optional): Starting byte offset (default: 0)maxChunks(optional): Maximum chunks to return (default: 10)
Supported File Types
The server intelligently detects and optimizes for:
- Text files (.txt) - 500 lines/chunk
- Log files (.log) - 500 lines/chunk
- Code files (.ts, .js, .py, .java, .cpp, .go, .rs, etc.) - 300 lines/chunk
- CSV files (.csv) - 1000 lines/chunk
- JSON files (.json) - 100 lines/chunk
- XML files (.xml) - 200 lines/chunk
- Markdown files (.md) - 500 lines/chunk
- Configuration files (.yml, .yaml, .sh, .bash) - 300 lines/chunk
Configuration
Customize behavior using environment variables:
| Variable | Description | Default |
|---|---|---|
CHUNK_SIZE |
Default lines per chunk | 500 |
OVERLAP_LINES |
Overlap between chunks | 10 |
MAX_FILE_SIZE |
Maximum file size in bytes | 10GB |
CACHE_SIZE |
Cache size in bytes | 100MB |
CACHE_TTL |
Cache TTL in milliseconds | 5 minutes |
CACHE_ENABLED |
Enable/disable caching | true |
Example with custom settings (Claude Desktop):
{
"mcpServers": {
"large-file": {
"command": "npx",
"args": ["-y", "@willianpinho/large-file-mcp"],
"env": {
"CHUNK_SIZE": "1000",
"CACHE_ENABLED": "true"
}
}
}
}
Example with custom settings (Claude Code CLI):
claude mcp add --transport stdio --scope user large-file-mcp \
--env CHUNK_SIZE=1000 \
--env CACHE_ENABLED=true \
-- npx -y @willianpinho/large-file-mcp
Examples
Analyzing Log Files
Analyze /var/log/nginx/access.log and find all 404 errors
The AI will use the search tool to find patterns and provide context around each match.
Code Navigation
Find all function definitions in /project/src/main.py
Uses regex search to locate function definitions with surrounding code context.
CSV Data Exploration
Show me the structure of /data/sales.csv
Returns metadata, line count, sample rows, and recommended chunk size.
Large File Processing
Stream the first 100MB of /data/huge_dataset.json
Uses streaming mode to handle very large files efficiently.
Performance
Caching
- LRU Cache with configurable size (default 100MB)
- TTL-based expiration (default 5 minutes)
- 80-90% hit rate for repeated access
- Significant performance improvement for frequently accessed files
Memory Management
- Streaming architecture - files are read line-by-line, never fully loaded
- Configurable chunk sizes - adjust based on your use case
- Smart buffering - minimal memory footprint for search operations
File Size Handling
| File Size | Operation Time | Method |
|---|---|---|
| < 1MB | < 100ms | Direct read |
| 1-100MB | < 500ms | Streaming |
| 100MB-1GB | 1-3s | Streaming + cache |
| > 1GB | Progressive | AsyncGenerator |
Development
Building from Source
git clone https://github.com/willianpinho/large-file-mcp.git
cd large-file-mcp
npm install
npm run build
Development Mode
npm run dev # Watch mode
npm run lint # Run linter
npm start # Run server
Project Structure
src/
├── index.ts # Entry point
├── server.ts # MCP server implementation
├── fileHandler.ts # Core file handling logic
├── cacheManager.ts # Caching implementation
└── types.ts # TypeScript type definitions
Troubleshooting
File not accessible
Ensure the file path is absolute and the file has read permissions:
chmod +r /path/to/file
Out of memory
- Reduce
CHUNK_SIZEenvironment variable - Disable cache with
CACHE_ENABLED=false - Use
stream_large_filefor very large files
Slow search performance
- Reduce
maxResultsparameter - Use
startLineandendLineto limit search range - Ensure caching is enabled
Claude Code CLI: MCP server not found
Check if the server is installed:
claude mcp list
If not listed, reinstall:
claude mcp add --transport stdio --scope user large-file-mcp -- npx -y @willianpinho/large-file-mcp
Check server health:
claude mcp get large-file-mcp
Contributing
Contributions are welcome! Please feel free to submit issues or pull requests.
Development Workflow
- Fork the repository
- Create a feature branch
- Make your changes
- Ensure code builds and lints successfully
- Submit a pull request
See CONTRIBUTING.md for detailed guidelines.
License
MIT
Support
- Issues: GitHub Issues
- Documentation: This README and inline code documentation
- Examples: Check the
examples/directory
Acknowledgments
Built with the Model Context Protocol SDK.
Made for the AI developer community.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.