LangGraph Agent MCP Server

LangGraph Agent MCP Server

Provides a standardized interface to interact with LangGraph agents through ChatGPT Enterprise, enabling conversational AI workflows with tools for agent invocation, streaming responses, and thread management.

Category
Visit Server

README

MCP Server for LangGraph Agent

FastMCP-based Model Context Protocol server for ChatGPT Enterprise integration with LangGraph agent.

🎉 Quick Start

The fastest way to get started:

./start.sh

This will:

  1. Check if your LangGraph agent is running on port 2024
  2. Start the MCP server on port 8000
  3. Start the test UI on port 3005
  4. Open http://localhost:3005 in your browser

Overview

This MCP server provides a standardized interface to interact with a LangGraph agent deployed on port 2024, compliant with ChatGPT Enterprise integration requirements.

✨ Latest Updates

January 2025 - LangGraph CLI Integration

  • ✅ Refactored to use LangGraph CLI API architecture
  • ✅ Updated to /runs, /runs/stream, /ok endpoints
  • ✅ Changed message format to {"type": "human"}
  • ✅ Added 3 new tools: health check, agent status, thread listing
  • ✅ Fixed all async operations (no more blocking calls)
  • ✅ Updated web UI to match new API structure

See REFACTORING_SUMMARY.md for detailed changes.

Features

  • MCP Protocol 2025-06-18 compliant
  • ChatGPT Enterprise compatible (SSE transport)
  • OAuth 2.0 Authentication - Google OAuth and API key support
  • FastMCP 2.13.0+ framework for production-ready deployment
  • LangGraph CLI API integration
  • 6 Tools: invoke_agent, stream_agent, check_system_health, check_agent_status, get_thread_state, list_threads
  • 2 Resources: Agent health check and server info
  • Prompts: Formatted agent queries
  • Web Test UI: Interactive testing interface on port 3005
  • Secure by Default: Optional authentication for production deployments

Installation

  1. Install dependencies:
pip install -r requirements.txt
  1. Configure environment (optional):
# Copy example configuration
cp .env.example .env

# Edit .env with your settings
# For development without auth:
OAUTH_ENABLED=false

# For production with auth:
OAUTH_ENABLED=true
GOOGLE_CLIENT_ID=your-client-id
GOOGLE_CLIENT_SECRET=your-client-secret
API_KEYS=your-api-key-1,your-api-key-2
  1. Generate credentials (if using OAuth):
python generate_credentials.py

See OAUTH_SETUP.md for detailed authentication setup.

Usage

Option 1: Quick Start Script (Recommended)

./start.sh

Option 2: Manual Start

Start MCP Server:

python src/agent_mcp/mcp_server.py

Start Test UI (optional):

cd web_ui && python server.py

Option 3: Using FastMCP CLI

python -m agent_mcp.mcp_server

Or using FastMCP CLI:

fastmcp run src/agent_mcp/mcp_server.py

For local development (STDIO):

fastmcp dev src/agent_mcp/mcp_server.py

Custom transport:

from agent_mcp.mcp_server import mcp

# HTTP transport
mcp.run(transport="http", host="0.0.0.0", port=8000, path="/mcp")

# SSE transport (for ChatGPT Enterprise)
mcp.run(transport="sse", host="0.0.0.0", port=8000)

Available Tools

1. invoke_agent

Execute a single invocation of the LangGraph agent.

{
    "prompt": "What is the capital of France?",
    "thread_id": "optional-thread-id"
}

2. stream_agent

Stream responses from the LangGraph agent.

{
    "prompt": "Tell me a story",
    "thread_id": "optional-thread-id"
}

3. get_agent_state

Retrieve the current state of a conversation thread.

{
    "thread_id": "thread-id-to-query"
}

Authentication

The MCP server supports three authentication methods for production deployments:

1. OAuth 2.0 (Google or Okta)

Enable user-based authentication with your preferred identity provider:

Google OAuth:

# .env configuration
OAUTH_ENABLED=true
OAUTH_PROVIDER=google
GOOGLE_CLIENT_ID=your-client-id.apps.googleusercontent.com
GOOGLE_CLIENT_SECRET=your-client-secret

Okta OAuth:

# .env configuration
OAUTH_ENABLED=true
OAUTH_PROVIDER=okta
OKTA_DOMAIN=your-domain.okta.com
OKTA_CLIENT_ID=your-okta-client-id
OKTA_CLIENT_SECRET=your-okta-client-secret

OAuth Endpoints:

  • GET /auth/login - Initiate OAuth flow
  • GET /auth/callback - OAuth callback handler
  • GET /auth/logout - Logout
  • GET /auth/status - Check authentication status

Quick Start Guides:

2. API Key Authentication

Use API keys for service-to-service authentication:

# Generate API keys
python generate_credentials.py

# Add to .env
API_KEYS=key1,key2,key3

Using API Keys:

# cURL
curl -H "X-API-Key: your-api-key" http://localhost:8000/sse

# Python
headers = {"X-API-Key": "your-api-key"}

Testing Authentication

# Test OAuth setup
python test_oauth.py

# Or test manually
curl http://localhost:8000/health  # Public endpoint
curl -H "X-API-Key: your-key" http://localhost:8000/sse  # Protected

For detailed setup instructions, see OAUTH_SETUP.md

Resources

  • agent://health - Agent health check
  • agent://info - Agent capabilities and metadata

Prompts

  • agent_query_prompt - Format queries for the agent

ChatGPT Enterprise Integration

This server is designed for ChatGPT Enterprise integration with:

  1. SSE Transport: Default transport for real-time streaming
  2. MCP Protocol 2025-06-18: Latest stable protocol version
  3. Proper Tool Schemas: Auto-generated from Python type hints
  4. Context Support: Logging and progress reporting
  5. Error Handling: Comprehensive error responses

ChatGPT Configuration

Add to your ChatGPT Enterprise MCP configuration:

{
  "mcpServers": {
    "langgraph-agent": {
      "url": "http://your-server:8000/sse",
      "transport": "sse"
    }
  }
}

Testing

Web UI Test Tool

We provide a beautiful web-based UI to test your MCP server and LangGraph agent:

# Start the test UI server
cd web_ui
python server.py

Then open http://localhost:3005 in your browser to:

  • Test MCP server connectivity
  • Test LangGraph agent connectivity
  • Invoke agent with custom prompts
  • Stream responses in real-time
  • View activity logs

See web_ui/README.md for details.

Unit Tests

Run tests:

pytest tests/test_mcp_server.py -v

Run all tests:

pytest

Development

Project Structure

agent-mcp-py/
├── src/
│   └── agent_mcp/
│       ├── __init__.py
│       └── mcp_server.py      # FastMCP server implementation
├── tests/
│   ├── test_mcp_server.py     # MCP server tests
│   └── test_*.py              # Other tests
├── requirements.txt           # Production dependencies
├── requirements-dev.txt       # Development dependencies
└── README.md

Adding New Tools

from fastmcp import Context

@mcp.tool()
async def my_tool(param: str, ctx: Context = None) -> dict:
    """Tool description for ChatGPT."""
    if ctx:
        await ctx.info(f"Processing: {param}")

    # Your logic here
    return {"result": "success"}

Adding Resources

@mcp.resource("custom://resource")
async def my_resource() -> str:
    """Resource description."""
    return "Resource content"

Architecture

┌─────────────────┐
│  ChatGPT        │
│  Enterprise     │
└────────┬────────┘
         │ MCP/SSE
         │
┌────────▼────────┐
│  FastMCP        │
│  Server         │
│  (Port 8000)    │
└────────┬────────┘
         │ HTTP
         │
┌────────▼────────┐
│  LangGraph      │
│  Agent          │
│  (Port 2024)    │
└─────────────────┘

Production Deployment

With Authentication

from fastmcp.server.auth.providers.google import GoogleProvider

auth = GoogleProvider(
    client_id="your-client-id",
    client_secret="your-client-secret",
    base_url="https://your-domain.com"
)

mcp = FastMCP(
    "LangGraph Agent Server",
    auth=auth
)

Docker Deployment

FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt

COPY src/ ./src/
CMD ["python", "-m", "agent_mcp.mcp_server"]

License

MIT

References

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured