LangGraph Agent MCP Server
Provides a standardized interface to interact with LangGraph agents through ChatGPT Enterprise, enabling conversational AI workflows with tools for agent invocation, streaming responses, and thread management.
README
MCP Server for LangGraph Agent
FastMCP-based Model Context Protocol server for ChatGPT Enterprise integration with LangGraph agent.
🎉 Quick Start
The fastest way to get started:
./start.sh
This will:
- Check if your LangGraph agent is running on port 2024
- Start the MCP server on port 8000
- Start the test UI on port 3005
- Open http://localhost:3005 in your browser
Overview
This MCP server provides a standardized interface to interact with a LangGraph agent deployed on port 2024, compliant with ChatGPT Enterprise integration requirements.
✨ Latest Updates
January 2025 - LangGraph CLI Integration
- ✅ Refactored to use LangGraph CLI API architecture
- ✅ Updated to
/runs,/runs/stream,/okendpoints - ✅ Changed message format to
{"type": "human"} - ✅ Added 3 new tools: health check, agent status, thread listing
- ✅ Fixed all async operations (no more blocking calls)
- ✅ Updated web UI to match new API structure
See REFACTORING_SUMMARY.md for detailed changes.
Features
- ✅ MCP Protocol 2025-06-18 compliant
- ✅ ChatGPT Enterprise compatible (SSE transport)
- ✅ OAuth 2.0 Authentication - Google OAuth and API key support
- ✅ FastMCP 2.13.0+ framework for production-ready deployment
- ✅ LangGraph CLI API integration
- ✅ 6 Tools: invoke_agent, stream_agent, check_system_health, check_agent_status, get_thread_state, list_threads
- ✅ 2 Resources: Agent health check and server info
- ✅ Prompts: Formatted agent queries
- ✅ Web Test UI: Interactive testing interface on port 3005
- ✅ Secure by Default: Optional authentication for production deployments
Installation
- Install dependencies:
pip install -r requirements.txt
- Configure environment (optional):
# Copy example configuration
cp .env.example .env
# Edit .env with your settings
# For development without auth:
OAUTH_ENABLED=false
# For production with auth:
OAUTH_ENABLED=true
GOOGLE_CLIENT_ID=your-client-id
GOOGLE_CLIENT_SECRET=your-client-secret
API_KEYS=your-api-key-1,your-api-key-2
- Generate credentials (if using OAuth):
python generate_credentials.py
See OAUTH_SETUP.md for detailed authentication setup.
Usage
Option 1: Quick Start Script (Recommended)
./start.sh
Option 2: Manual Start
Start MCP Server:
python src/agent_mcp/mcp_server.py
Start Test UI (optional):
cd web_ui && python server.py
Option 3: Using FastMCP CLI
python -m agent_mcp.mcp_server
Or using FastMCP CLI:
fastmcp run src/agent_mcp/mcp_server.py
For local development (STDIO):
fastmcp dev src/agent_mcp/mcp_server.py
Custom transport:
from agent_mcp.mcp_server import mcp
# HTTP transport
mcp.run(transport="http", host="0.0.0.0", port=8000, path="/mcp")
# SSE transport (for ChatGPT Enterprise)
mcp.run(transport="sse", host="0.0.0.0", port=8000)
Available Tools
1. invoke_agent
Execute a single invocation of the LangGraph agent.
{
"prompt": "What is the capital of France?",
"thread_id": "optional-thread-id"
}
2. stream_agent
Stream responses from the LangGraph agent.
{
"prompt": "Tell me a story",
"thread_id": "optional-thread-id"
}
3. get_agent_state
Retrieve the current state of a conversation thread.
{
"thread_id": "thread-id-to-query"
}
Authentication
The MCP server supports three authentication methods for production deployments:
1. OAuth 2.0 (Google or Okta)
Enable user-based authentication with your preferred identity provider:
Google OAuth:
# .env configuration
OAUTH_ENABLED=true
OAUTH_PROVIDER=google
GOOGLE_CLIENT_ID=your-client-id.apps.googleusercontent.com
GOOGLE_CLIENT_SECRET=your-client-secret
Okta OAuth:
# .env configuration
OAUTH_ENABLED=true
OAUTH_PROVIDER=okta
OKTA_DOMAIN=your-domain.okta.com
OKTA_CLIENT_ID=your-okta-client-id
OKTA_CLIENT_SECRET=your-okta-client-secret
OAuth Endpoints:
GET /auth/login- Initiate OAuth flowGET /auth/callback- OAuth callback handlerGET /auth/logout- LogoutGET /auth/status- Check authentication status
Quick Start Guides:
2. API Key Authentication
Use API keys for service-to-service authentication:
# Generate API keys
python generate_credentials.py
# Add to .env
API_KEYS=key1,key2,key3
Using API Keys:
# cURL
curl -H "X-API-Key: your-api-key" http://localhost:8000/sse
# Python
headers = {"X-API-Key": "your-api-key"}
Testing Authentication
# Test OAuth setup
python test_oauth.py
# Or test manually
curl http://localhost:8000/health # Public endpoint
curl -H "X-API-Key: your-key" http://localhost:8000/sse # Protected
For detailed setup instructions, see OAUTH_SETUP.md
Resources
agent://health- Agent health checkagent://info- Agent capabilities and metadata
Prompts
agent_query_prompt- Format queries for the agent
ChatGPT Enterprise Integration
This server is designed for ChatGPT Enterprise integration with:
- SSE Transport: Default transport for real-time streaming
- MCP Protocol 2025-06-18: Latest stable protocol version
- Proper Tool Schemas: Auto-generated from Python type hints
- Context Support: Logging and progress reporting
- Error Handling: Comprehensive error responses
ChatGPT Configuration
Add to your ChatGPT Enterprise MCP configuration:
{
"mcpServers": {
"langgraph-agent": {
"url": "http://your-server:8000/sse",
"transport": "sse"
}
}
}
Testing
Web UI Test Tool
We provide a beautiful web-based UI to test your MCP server and LangGraph agent:
# Start the test UI server
cd web_ui
python server.py
Then open http://localhost:3005 in your browser to:
- Test MCP server connectivity
- Test LangGraph agent connectivity
- Invoke agent with custom prompts
- Stream responses in real-time
- View activity logs
See web_ui/README.md for details.
Unit Tests
Run tests:
pytest tests/test_mcp_server.py -v
Run all tests:
pytest
Development
Project Structure
agent-mcp-py/
├── src/
│ └── agent_mcp/
│ ├── __init__.py
│ └── mcp_server.py # FastMCP server implementation
├── tests/
│ ├── test_mcp_server.py # MCP server tests
│ └── test_*.py # Other tests
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
└── README.md
Adding New Tools
from fastmcp import Context
@mcp.tool()
async def my_tool(param: str, ctx: Context = None) -> dict:
"""Tool description for ChatGPT."""
if ctx:
await ctx.info(f"Processing: {param}")
# Your logic here
return {"result": "success"}
Adding Resources
@mcp.resource("custom://resource")
async def my_resource() -> str:
"""Resource description."""
return "Resource content"
Architecture
┌─────────────────┐
│ ChatGPT │
│ Enterprise │
└────────┬────────┘
│ MCP/SSE
│
┌────────▼────────┐
│ FastMCP │
│ Server │
│ (Port 8000) │
└────────┬────────┘
│ HTTP
│
┌────────▼────────┐
│ LangGraph │
│ Agent │
│ (Port 2024) │
└─────────────────┘
Production Deployment
With Authentication
from fastmcp.server.auth.providers.google import GoogleProvider
auth = GoogleProvider(
client_id="your-client-id",
client_secret="your-client-secret",
base_url="https://your-domain.com"
)
mcp = FastMCP(
"LangGraph Agent Server",
auth=auth
)
Docker Deployment
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY src/ ./src/
CMD ["python", "-m", "agent_mcp.mcp_server"]
License
MIT
References
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.