langfuse-mcp
MCP server for Langfuse observability. Query traces, debug exceptions, analyze sessions, and manage prompts and datasets for your LLM applications.
README
Langfuse MCP Server
Model Context Protocol server for Langfuse observability. Query traces, debug errors, analyze sessions, manage prompts.
Why langfuse-mcp?
Comparison with official Langfuse MCP (as of Jan 2026):
| langfuse-mcp | Official | |
|---|---|---|
| Traces & Observations | Yes | No |
| Sessions & Users | Yes | No |
| Exception Tracking | Yes | No |
| Prompt Management | Yes | Yes |
| Dataset Management | Yes | No |
| Selective Tool Loading | Yes | No |
This project provides a full observability toolkit — traces, observations, sessions, exceptions, and prompts — while the official MCP focuses on prompt management.
Quick Start
Requires uv (for uvx).
Get credentials from Langfuse Cloud → Settings → API Keys. If self-hosted, use your instance URL for LANGFUSE_HOST.
# Claude Code (project-scoped, shared via .mcp.json)
claude mcp add \
--scope project \
--env LANGFUSE_PUBLIC_KEY=pk-... \
--env LANGFUSE_SECRET_KEY=sk-... \
--env LANGFUSE_HOST=https://cloud.langfuse.com \
langfuse -- uvx --python 3.11 langfuse-mcp
# Codex CLI (user-scoped, stored in ~/.codex/config.toml)
codex mcp add langfuse \
--env LANGFUSE_PUBLIC_KEY=pk-... \
--env LANGFUSE_SECRET_KEY=sk-... \
--env LANGFUSE_HOST=https://cloud.langfuse.com \
-- uvx --python 3.11 langfuse-mcp
Restart your CLI, then verify with /mcp (Claude Code) or codex mcp list (Codex).
Tools (25 total)
| Category | Tools |
|---|---|
| Traces | fetch_traces, fetch_trace |
| Observations | fetch_observations, fetch_observation |
| Sessions | fetch_sessions, get_session_details, get_user_sessions |
| Exceptions | find_exceptions, find_exceptions_in_file, get_exception_details, get_error_count |
| Prompts | list_prompts, get_prompt, get_prompt_unresolved, create_text_prompt, create_chat_prompt, update_prompt_labels |
| Datasets | list_datasets, get_dataset, list_dataset_items, get_dataset_item, create_dataset, create_dataset_item, delete_dataset_item |
| Schema | get_data_schema |
Dataset Item Updates (Upsert)
Langfuse uses upsert for dataset items. To edit an existing item, call create_dataset_item with item_id. If the ID exists, it updates; otherwise it creates a new item.
create_dataset_item(
dataset_name="qa-test-cases",
item_id="item_123",
input={"question": "What is 2+2?"},
expected_output={"answer": "4"}
)
Skill
This project includes a skill with debugging playbooks.
Via skild.sh (registry-based):
npx skild install @avivsinai/langfuse
Via skills.sh (GitHub-based):
npx skills add avivsinai/langfuse-mcp
Manual install:
cp -r skills/langfuse ~/.claude/skills/ # Claude Code
cp -r skills/langfuse ~/.codex/skills/ # Codex CLI
Try asking: "help me debug langfuse traces"
See skills/langfuse/SKILL.md for full documentation.
Selective Tool Loading
Load only the tool groups you need to reduce token overhead:
langfuse-mcp --tools traces,prompts
Available groups: traces, observations, sessions, exceptions, prompts, datasets, schema
Read-Only Mode
Disable all write operations for safer read-only access:
langfuse-mcp --read-only
# Or via environment variable
LANGFUSE_MCP_READ_ONLY=true langfuse-mcp
This disables: create_text_prompt, create_chat_prompt, update_prompt_labels, create_dataset, create_dataset_item, delete_dataset_item
Other Clients
Cursor
Create .cursor/mcp.json in your project (or ~/.cursor/mcp.json for global):
{
"mcpServers": {
"langfuse": {
"command": "uvx",
"args": ["--python", "3.11", "langfuse-mcp"],
"env": {
"LANGFUSE_PUBLIC_KEY": "pk-...",
"LANGFUSE_SECRET_KEY": "sk-...",
"LANGFUSE_HOST": "https://cloud.langfuse.com"
}
}
}
}
Docker
docker run --rm -i \
-e LANGFUSE_PUBLIC_KEY=pk-... \
-e LANGFUSE_SECRET_KEY=sk-... \
-e LANGFUSE_HOST=https://cloud.langfuse.com \
ghcr.io/avivsinai/langfuse-mcp:latest
Development
uv venv --python 3.11 .venv && source .venv/bin/activate
uv pip install -e ".[dev]"
pytest
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.