LangChain Documentation MCP Server

LangChain Documentation MCP Server

Provides real-time access to official LangChain documentation, API references, and GitHub code examples to assist in LangChain-based development. It enables LLMs to search for tutorials, version info, and detailed class specifications directly from live sources.

Category
Visit Server

README

LangChain Documentation MCP Server

A comprehensive dual-mode server that provides real-time access to LangChain documentation, API references, and code examples. Supports both FastAPI web service and native Model Context Protocol (MCP) server modes, fetching live data from official LangChain sources.

šŸš€ Features

  • ļæ½ļø Dual Server Modes - Run as FastAPI web service or native MCP server
  • ļæ½šŸ“š Live Documentation Search - Search through official LangChain documentation in real-time
  • šŸ” API Reference Lookup - Get detailed API references from GitHub source code
  • šŸ™ GitHub Code Examples - Fetch real code examples from the LangChain repository
  • šŸ“– Tutorial Discovery - Find and access LangChain tutorials and guides
  • šŸ“¦ Version Tracking - Get latest version information from PyPI
  • šŸ”— Direct API Search - Search specifically through API reference documentation
  • šŸ”Œ MCP Protocol Support - Native Model Context Protocol implementation

🌐 Data Sources

This server fetches live data from:

  • python.langchain.com - Official LangChain documentation
  • GitHub LangChain Repository - Source code and examples
  • PyPI - Latest version and release information

šŸ“‹ API Endpoints

Core Endpoints

  • GET / - API documentation (Swagger UI)
  • GET /health - Health check and service status

LangChain Documentation

  • GET /search - Search general documentation
  • GET /search/api - Search API reference specifically
  • GET /api-reference/{class_name} - Get detailed API reference for a class
  • GET /examples/github - Get real code examples from GitHub
  • GET /tutorials - Get tutorials and guides
  • GET /latest-version - Get latest LangChain version info

šŸš€ Quick Start

Option 1: Docker Compose (Recommended)

  1. Clone the repository

    git clone https://github.com/LiteObject/langchain-mcp-server.git
    cd langchain-mcp-server
    
  2. Start the FastAPI server

    docker-compose up --build
    
  3. Access the API

    • API Documentation: http://localhost:8080/docs
    • Health Check: http://localhost:8080/health

Option 2: Local Development

FastAPI Mode

  1. Install dependencies

    pip install -r requirements.txt
    
  2. Run the FastAPI server

    # Using the main entry point
    python run.py
    
    # Or using the dedicated script
    python scripts/run_fastapi.py
    
    # Or directly with uvicorn
    uvicorn src.api.fastapi_app:app --host 0.0.0.0 --port 8000
    

MCP Server Mode

  1. Install dependencies

    pip install -r requirements.txt
    
  2. Run the MCP server

    # Using the main entry point
    python run.py mcp
    
    # Or using the dedicated script
    python scripts/run_mcp.py
    

šŸ“š Usage Examples

Search Documentation

# Search for "ChatOpenAI" in documentation
curl "http://localhost:8080/search?query=ChatOpenAI&limit=5"

# Search API reference specifically
curl "http://localhost:8080/search/api?query=embeddings"

Get API Reference

# Get detailed API reference for ChatOpenAI
curl "http://localhost:8080/api-reference/ChatOpenAI"

# Get API reference for LLMChain
curl "http://localhost:8080/api-reference/LLMChain"

Fetch Code Examples

# Get real examples from GitHub
curl "http://localhost:8080/examples/github?query=chatbot&limit=3"

# Get general examples
curl "http://localhost:8080/examples/github"

Get Tutorials

# Fetch all available tutorials
curl "http://localhost:8080/tutorials"

Version Information

# Get latest version from PyPI
curl "http://localhost:8080/latest-version"

šŸ”Œ MCP Server Usage

When running in MCP mode, the server provides the following tools:

Available MCP Tools

  • search_langchain_docs - Search LangChain documentation
  • search_api_reference - Search API reference specifically
  • get_api_reference - Get detailed API reference for a class
  • get_github_examples - Get code examples from GitHub
  • get_tutorials - Get available tutorials
  • get_latest_version - Get latest LangChain version

MCP Client Integration

{
  "mcpServers": {
    "langchain-docs": {
      "command": "python",
      "args": ["path/to/langchain-mcp-server/run.py", "mcp"],
      "env": {
        "PYTHONPATH": "path/to/langchain-mcp-server"
      }
    }
  }
}

šŸ› ļø Configuration

Environment Variables

Variable Description Default
HOST Server host address 0.0.0.0
PORT Server port 8000
DEBUG Enable debug mode False
LOG_LEVEL Logging level INFO
REQUEST_TIMEOUT Timeout for external API calls 30 seconds
GITHUB_TOKEN GitHub API token (optional) None

Docker Configuration

The service runs on port 8080 by default to avoid conflicts. You can modify this in docker-compose.yml:

ports:
  - "8080:8000"  # Host:Container

šŸ”§ Development

Project Structure

ā”œā”€ā”€ src/                    # Main source code package
│   ā”œā”€ā”€ main.py            # Main entry point with dual mode support
│   ā”œā”€ā”€ api/               # API layer
│   │   ā”œā”€ā”€ fastapi_app.py # FastAPI application
│   │   └── mcp_server.py  # Native MCP server implementation
│   ā”œā”€ā”€ config/            # Configuration management
│   │   ā”œā”€ā”€ settings.py    # Application settings
│   │   └── logging.py     # Logging configuration
│   ā”œā”€ā”€ models/            # Data models and schemas
│   │   └── schemas.py     # Pydantic models
│   ā”œā”€ā”€ services/          # Business logic
│   │   └── langchain_service.py # LangChain documentation service
│   └── utils/             # Utility modules
│       ā”œā”€ā”€ exceptions.py  # Custom exceptions
│       └── helpers.py     # Helper functions
ā”œā”€ā”€ scripts/               # Convenience scripts
│   ā”œā”€ā”€ run_fastapi.py    # Run FastAPI mode
│   ā”œā”€ā”€ run_mcp.py        # Run MCP mode
│   └── health_check.py   # Health check utility
ā”œā”€ā”€ tests/                 # Test suite
│   ā”œā”€ā”€ test_api.py       # API tests
│   ā”œā”€ā”€ test_services.py  # Service tests
│   └── test_integration.py # Integration tests
ā”œā”€ā”€ docs/                  # Documentation
│   └── API.md            # API documentation
ā”œā”€ā”€ logs/                  # Log files
ā”œā”€ā”€ run.py                # Simple entry point
ā”œā”€ā”€ requirements.txt      # Python dependencies
ā”œā”€ā”€ pyproject.toml        # Project configuration
ā”œā”€ā”€ Dockerfile           # Docker configuration
ā”œā”€ā”€ docker-compose.yml   # Docker Compose setup
ā”œā”€ā”€ DOCKER.md           # Docker documentation
└── README.md           # This file

Key Dependencies

  • FastAPI - Web framework for REST API mode
  • MCP - Native Model Context Protocol support
  • FastAPI-MCP - MCP integration for FastAPI
  • httpx - Async HTTP client for external API calls
  • BeautifulSoup4 - HTML parsing for documentation scraping
  • Pydantic - Data validation and settings management
  • uvicorn - ASGI server for FastAPI

Adding New Endpoints

  1. Define Pydantic models for request/response
  2. Add endpoint function with proper type hints
  3. Include comprehensive docstrings
  4. Add error handling with specific exceptions
  5. Update health check endpoint count

šŸ› Error Handling

The server includes robust error handling for:

  • Network failures - Graceful degradation when external APIs are unavailable
  • Rate limiting - Handles GitHub API rate limits
  • Invalid requests - Proper HTTP status codes and error messages
  • Timeouts - Configurable request timeouts

šŸ“Š Health Monitoring

The /health endpoint provides:

  • Service status
  • Available endpoints count
  • Data source URLs
  • Current timestamp
  • Updated documentation sections

šŸ”’ Security Considerations

  • Rate Limiting - Consider implementing rate limiting for production
  • CORS - Configure CORS headers if needed for web access
  • API Keys - Add GitHub token for higher API limits
  • Input Validation - All inputs are validated using Pydantic

šŸš€ Production Deployment

For production use, consider:

  1. Caching - Add Redis/Memcached for response caching
  2. Rate Limiting - Implement request rate limiting
  3. Monitoring - Add application monitoring and logging
  4. Load Balancing - Use multiple instances behind a load balancer
  5. Database - Store frequently accessed data
  6. CI/CD - Set up automated deployment pipeline

šŸ¤ Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ”— Related Links

šŸ†˜ Support

If you encounter any issues:

  1. Check the health endpoint for service status (FastAPI mode)
  2. Review Docker logs: docker-compose logs
  3. Check application logs in the logs/ directory
  4. Ensure network connectivity to external APIs
  5. Verify all dependencies are installed correctly
  6. For MCP mode issues, check the MCP client configuration

Note: This server requires internet connectivity to fetch live data from LangChain's official sources. API rate limits may apply for GitHub API calls.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured