LangChain Agent MCP Server
Exposes LangChain agent capabilities through the Model Context Protocol, enabling multi-step reasoning tasks with ReAct pattern execution via a production-ready FastAPI service deployed on Google Cloud Run.
README
LangChain Agent MCP Server
A production-ready MCP server exposing LangChain agent capabilities through the Model Context Protocol, deployed on Google Cloud Run.
๐ Overview
This is a standalone backend service that wraps a LangChain agent as a single, high-level MCP Tool. The server is built with FastAPI and deployed on Google Cloud Run, providing a scalable, production-ready solution for exposing AI agent capabilities to any MCP-compliant client.
Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
โจ Features
- โ MCP Compliance - Full Model Context Protocol support
- โ LangChain Agent - Multi-step reasoning with ReAct pattern
- โ Google Cloud Run - Scalable, serverless deployment
- โ Tool Support - Extensible framework for custom tools
- โ Production Ready - Error handling, logging, and monitoring
- โ Docker Support - Containerized for easy deployment
๐๏ธ Architecture
| Component | Technology | Purpose |
|---|---|---|
| Backend Framework | FastAPI | High-performance, asynchronous web server |
| Agent Framework | LangChain | Multi-step reasoning and tool execution |
| Deployment | Google Cloud Run | Serverless, auto-scaling hosting |
| Containerization | Docker | Consistent deployment environment |
| Protocol | Model Context Protocol (MCP) | Standardized tool and context sharing |
๐ ๏ธ Quick Start
Prerequisites
- Python 3.11+
- OpenAI API key
- Google Cloud account (for Cloud Run deployment)
- Docker (optional, for local testing)
Local Development
-
Clone the repository:
git clone https://github.com/mcpmessenger/LangchainMCP.git cd LangchainMCP -
Install dependencies:
# Windows py -m pip install -r requirements.txt # Linux/Mac pip install -r requirements.txt -
Set up environment variables: Create a
.envfile:OPENAI_API_KEY=your-openai-api-key-here OPENAI_MODEL=gpt-4o-mini PORT=8000 -
Run the server:
# Windows py run_server.py # Linux/Mac python run_server.py -
Test the endpoints:
- Health: http://localhost:8000/health
- Manifest: http://localhost:8000/mcp/manifest
- API Docs: http://localhost:8000/docs
โ๏ธ Google Cloud Run Deployment
The server is designed for deployment on Google Cloud Run. See our comprehensive deployment guides:
- DEPLOY_CLOUD_RUN_WINDOWS.md - Windows deployment guide
- DEPLOY_CLOUD_RUN.md - General deployment guide
- QUICK_DEPLOY.md - Quick reference
Quick Deploy
# Windows PowerShell
.\deploy-cloud-run.ps1 -ProjectId "your-project-id" -Region "us-central1"
# Linux/Mac
./deploy-cloud-run.sh your-project-id us-central1
Current Deployment
- Service URL: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
- Project: slashmcp
- Region: us-central1
- Status: โ Live and operational
๐ก API Endpoints
MCP Endpoints
Get Manifest
GET /mcp/manifest
Returns the MCP manifest declaring available tools.
Response:
{
"name": "langchain-agent-mcp-server",
"version": "1.0.0",
"tools": [
{
"name": "agent_executor",
"description": "Execute a complex, multi-step reasoning task...",
"inputSchema": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The user's query or task"
}
},
"required": ["query"]
}
}
]
}
Invoke Tool
POST /mcp/invoke
Content-Type: application/json
{
"tool": "agent_executor",
"arguments": {
"query": "What is the capital of France?"
}
}
Response:
{
"content": [
{
"type": "text",
"text": "The capital of France is Paris."
}
],
"isError": false
}
Other Endpoints
GET /- Server informationGET /health- Health checkGET /docs- Interactive API documentation (Swagger UI)
๐ง Configuration
Environment Variables
| Variable | Description | Default | Required |
|---|---|---|---|
OPENAI_API_KEY |
OpenAI API key | - | โ Yes |
OPENAI_MODEL |
OpenAI model to use | gpt-4o-mini |
No |
PORT |
Server port | 8000 |
No |
API_KEY |
Optional API key for authentication | - | No |
MAX_ITERATIONS |
Maximum agent iterations | 10 |
No |
VERBOSE |
Enable verbose logging | false |
No |
๐ Documentation
๐ Full Documentation Site - Complete documentation with examples (GitHub Pages)
Quick Links:
- Getting Started - Set up and run locally
- Examples - Code examples including "Build a RAG agent in 10 lines"
- Deployment Guide - Deploy to Google Cloud Run
- API Reference - Complete API documentation
- Troubleshooting - Common issues and solutions
Build Docs Locally:
# Windows
.\build-docs.ps1 serve
# Linux/Mac
./build-docs.sh serve
Additional Guides:
- README_BACKEND.md - Complete technical documentation
- DEPLOY_CLOUD_RUN_WINDOWS.md - Windows deployment guide
- INSTALL_PREREQUISITES.md - Prerequisites installation
- SLASHMCP_INTEGRATION.md - SlashMCP integration guide
๐งช Testing
# Test health endpoint
Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/health"
# Test agent invocation
$body = @{
tool = "agent_executor"
arguments = @{
query = "What is 2+2?"
}
} | ConvertTo-Json
Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/mcp/invoke" `
-Method POST `
-ContentType "application/json" `
-Body $body
๐๏ธ Project Structure
.
โโโ src/
โ โโโ main.py # FastAPI application with MCP endpoints
โ โโโ agent.py # LangChain agent definition and tools
โ โโโ mcp_manifest.json # MCP manifest configuration
โ โโโ start.sh # Cloud Run startup script
โโโ tests/
โ โโโ test_mcp_endpoints.py # Test suite
โโโ Dockerfile # Container configuration
โโโ requirements.txt # Python dependencies
โโโ deploy-cloud-run.ps1 # Windows deployment script
โโโ deploy-cloud-run.sh # Linux/Mac deployment script
โโโ cloudbuild.yaml # Cloud Build configuration
๐ Deployment Options
Google Cloud Run (Recommended)
- Scalable - Auto-scales based on traffic
- Serverless - Pay only for what you use
- Managed - No infrastructure to manage
- Fast - Low latency with global CDN
See DEPLOY_CLOUD_RUN_WINDOWS.md for detailed instructions.
Docker (Local/Other Platforms)
docker build -t langchain-agent-mcp-server .
docker run -p 8000:8000 -e OPENAI_API_KEY=your-key langchain-agent-mcp-server
๐ Performance
- P95 Latency: < 5 seconds for standard 3-step ReAct chains
- Scalability: Horizontal scaling on Cloud Run
- Uptime: 99.9% target (Cloud Run SLA)
- Throughput: Handles concurrent requests efficiently
๐ Security
- API key authentication (optional)
- Environment variable management
- Secret Manager integration (Cloud Run)
- HTTPS by default (Cloud Run)
- CORS configuration
๐ค Contributing
We welcome contributions! Please see our contributing guidelines.
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
๐ License
This project is licensed under the MIT License.
๐ Links
- GitHub Repository: https://github.com/mcpmessenger/LangchainMCP
- Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
- API Documentation: https://langchain-agent-mcp-server-554655392699.us-central1.run.app/docs
- Model Context Protocol: https://modelcontextprotocol.io/
๐ Acknowledgments
- Built with LangChain
- Deployed on Google Cloud Run
- Uses FastAPI for the web framework
Status: โ Production-ready and deployed on Google Cloud Run
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.