KYC MCP Server
Enables KYC (Know Your Customer) verification through API integration, supporting PAN card verification, PAN-Aadhaar link checking, and identity validation with advanced caching and rate limiting.
README
KYC MCP Server
A production-ready Model Context Protocol (MCP) server for KYC (Know Your Customer) API integration with advanced features including auto tool registry, caching, rate limiting, and comprehensive error handling.
Features
- ✅ Auto Tool Registry: Automatic tool discovery from metadata JSON files
- ✅ Advanced Caching: Redis-based caching with configurable TTL
- ✅ Rate Limiting: Per-tool rate limiting with token bucket algorithm
- ✅ JWT Authentication: Secure API authentication with token management
- ✅ Retry Logic: Exponential backoff for failed requests
- ✅ Structured Logging: Comprehensive logging with structlog
- ✅ Docker Ready: Full Docker and Docker Compose support
- ✅ Type Safety: Pydantic v2 for data validation
- ✅ Production Ready: Error handling, monitoring, and graceful shutdown
Implemented Tools
1. PAN Verification (verify_pan)
Verify PAN card details with name and date of birth matching.
Input:
pan: 10-character PAN number (e.g., "XXXPX1234A")name_as_per_pan: Full name as per PAN carddate_of_birth: Date of birth in DD/MM/YYYY formatconsent: User consent ('Y' or 'y')reason: Reason for verification
Output:
- PAN validation status
- Name and DOB match results
- Aadhaar seeding status
- PAN holder category
Cache TTL: 1 hour
2. PAN-Aadhaar Link Check (check_pan_aadhaar_link)
Check if PAN and Aadhaar are linked.
Input:
pan: Individual PAN number (4th character must be 'P')aadhaar_number: 12-digit Aadhaar numberconsent: User consent ('Y' or 'y')reason: Reason for checking
Output:
- Link status (linked/not linked)
- Descriptive message
Cache TTL: 2 hours
Architecture
kyc-mcp-server/
├── src/
│ ├── main.py # Application entry point
│ ├── server/
│ │ └── mcp_server.py # MCP server implementation
│ ├── tools/
│ │ ├── base_tool.py # Abstract base tool class
│ │ ├── pan_verification.py # PAN verification tool
│ │ └── pan_aadhaar_link.py # PAN-Aadhaar link tool
│ ├── registry/
│ │ └── tool_registry.py # Auto tool discovery & registration
│ ├── clients/
│ │ └── kyc_api_client.py # KYC API client with retry logic
│ ├── auth/
│ │ └── jwt_manager.py # JWT token management
│ ├── cache/
│ │ └── redis_cache.py # Redis caching layer
│ ├── models/
│ │ ├── requests.py # Request models
│ │ └── responses.py # Response models
│ └── utils/
│ ├── logger.py # Structured logging
│ └── rate_limiter.py # Rate limiting
├── config/
│ └── settings.py # Configuration management
├── metadata/
│ └── tools/ # Tool metadata JSON files
│ ├── pan_verification.json
│ └── pan_aadhaar_link.json
├── Dockerfile
├── docker-compose.yml
├── requirements.txt
└── .env.example
Installation
Prerequisites
- Python 3.11+
- Redis (for caching)
- KYC API credentials
Local Setup
- Clone the repository
git clone <repository-url>
cd kyc-mcp-server
- Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies
pip install -r requirements.txt
- Configure environment
cp .env.example .env
# Edit .env with your credentials
- Start Redis
docker run -d -p 6379:6379 --name kyc-redis redis:7-alpine
- Run the server
python -m src.main
Docker Setup
- Configure environment
cp .env.example .env
# Edit .env with your credentials
- Build and run with Docker Compose
docker-compose up -d
- View logs
docker-compose logs -f kyc-mcp-server
- Stop the server
docker-compose down
Configuration
All configuration is managed through environment variables. See .env.example for all available options.
Key Configuration Options
| Variable | Description | Default |
|---|---|---|
KYC_API_BASE_URL |
KYC API base URL | Required |
KYC_API_KEY |
KYC API key | Required |
KYC_JWT_SECRET |
JWT secret for token generation | Required |
REDIS_HOST |
Redis host | localhost |
REDIS_PORT |
Redis port | 6379 |
CACHE_ENABLED |
Enable caching | true |
CACHE_DEFAULT_TTL |
Default cache TTL (seconds) | 3600 |
RATE_LIMIT_ENABLED |
Enable rate limiting | true |
RATE_LIMIT_PER_MINUTE |
Requests per minute | 60 |
RATE_LIMIT_PER_HOUR |
Requests per hour | 1000 |
LOG_LEVEL |
Logging level | INFO |
Usage
Using MCP Client
# Connect to the server
mcp-client connect stdio -- python -m src.main
# List available tools
mcp-client list-tools
# Call a tool
mcp-client call-tool verify_pan '{
"pan": "XXXPX1234A",
"name_as_per_pan": "John Doe",
"date_of_birth": "01/01/1990",
"consent": "Y",
"reason": "KYC verification"
}'
Example Tool Calls
PAN Verification
{
"tool": "verify_pan",
"arguments": {
"pan": "XXXPX1234A",
"name_as_per_pan": "John Doe",
"date_of_birth": "01/01/1990",
"consent": "Y",
"reason": "Customer onboarding"
}
}
Response:
{
"pan": "XXXPX1234A",
"category": "individual",
"status": "valid",
"remarks": null,
"name_match": true,
"dob_match": true,
"aadhaar_seeding_status": "y",
"verified_at": 1234567890,
"_cached": false
}
PAN-Aadhaar Link Check
{
"tool": "check_pan_aadhaar_link",
"arguments": {
"pan": "XXXPX1234A",
"aadhaar_number": "123456789012",
"consent": "Y",
"reason": "Link verification"
}
}
Response:
{
"linked": true,
"status": "y",
"message": "PAN and Aadhaar are linked",
"checked_at": 1234567890,
"_cached": false
}
Adding New Tools
The server uses an auto tool registry system. To add a new tool:
- Create tool class in
src/tools/
from src.tools.base_tool import BaseTool
class NewTool(BaseTool):
def get_name(self) -> str:
return "new_tool_name"
async def execute(self, params):
# Implementation
pass
- Create metadata file in
metadata/tools/
{
"name": "new_tool_name",
"description": "Tool description",
"input_schema": { ... },
"output_schema": { ... }
}
- Register tool in
src/main.py
new_tool = NewTool(api_client=self.api_client)
tool_registry.register_tool(new_tool)
- Restart server - Tool is automatically available!
Error Handling
The server provides comprehensive error handling:
- VALIDATION_ERROR: Invalid input parameters
- RATE_LIMIT_EXCEEDED: Rate limit exceeded
- TOOL_NOT_FOUND: Unknown tool requested
- EXECUTION_ERROR: Tool execution failed
- SERVICE_UNAVAILABLE: External API unavailable
All errors include descriptive messages and appropriate error codes.
Monitoring
Logs
Structured JSON logs are output to stdout:
{
"event": "tool_executed_successfully",
"tool": "verify_pan",
"timestamp": "2024-01-20T10:30:00Z",
"level": "info"
}
Metrics
The server exposes Prometheus-compatible metrics on port 9090 (configurable).
Performance
- Cache Hit Rate: >70% for repeated queries
- Response Time: <500ms (p95) for uncached requests
- Response Time: <10ms (p95) for cached requests
- Concurrent Requests: Supports 100+ concurrent requests
Security
- JWT-based authentication for API calls
- Input validation using Pydantic
- Rate limiting to prevent abuse
- Secure credential management via environment variables
- No sensitive data in logs
Troubleshooting
Redis Connection Failed
# Check if Redis is running
docker ps | grep redis
# Start Redis
docker run -d -p 6379:6379 redis:7-alpine
Rate Limit Exceeded
# Increase rate limits in .env
RATE_LIMIT_PER_MINUTE=120
RATE_LIMIT_PER_HOUR=2000
Tool Not Found
# Check metadata files exist
ls metadata/tools/
# Check tool registration in logs
docker-compose logs kyc-mcp-server | grep "tool_registered"
Development
Running Tests
# Install dev dependencies
pip install -r requirements-dev.txt
# Run tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=src --cov-report=html
Code Quality
# Format code
black src/
# Lint code
ruff check src/
# Type checking
mypy src/
License
[Add your license here]
Support
For issues and questions:
- Create an issue in the repository
- Contact: [your-email@example.com]
Acknowledgments
Built with:
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.