Kulturpool MCP Server
Provides access to Austrian cultural heritage through the Kulturpool API, enabling search and discovery of cultural objects from major Austrian institutions like Albertina, Belvedere, and the Austrian National Library with progressive filtering and rate-limited security.
README
Kulturerbe MCP Server
Model Context Protocol (MCP) server for searching Austrian Cultural Heritage via the Kulturpool API.
Overview
This MCP server provides secure, rate-limited access to Austria's cultural heritage through the Kulturpool API. It implements a 6-tool progressive disclosure architecture designed for efficient context window usage and comprehensive cultural object discovery.
Features
🔍 6-Tool Progressive Disclosure Architecture
kulturpool_explore- Initial exploration with facet analysis (< 2KB response)kulturpool_search_filtered- Targeted search with comprehensive filters (≤ 20 results)kulturpool_get_details- Find related objects using content-based search (≤ 3 IDs)kulturpool_get_institutions- Complete institution directory with locationskulturpool_get_institution_details- Detailed institution metadatakulturpool_get_assets- Optimized image assets with transformations
🛡️ Built-in Security
- Input Sanitization: Protection against injection attacks
- Rate Limiting: 100 requests/hour per client
- Response Limits: < 10KB responses for context efficiency
- Parameter Validation: Comprehensive Pydantic-based validation
- Safe URL Handling: Restricted to Kulturpool API endpoints
⚡ Performance Optimized
- Progressive Disclosure: Start broad, then narrow down
- Compressed Responses: Essential metadata only
- Facet-Based Navigation: Smart filtering recommendations
- Connection Pooling: Efficient HTTP client with retry logic
Installation
Prerequisites
- Python 3.8 or higher
- pip package manager
- Git (for cloning the repository)
Setup
-
Clone the repository:
git clone https://github.com/yourusername/kulturerbe_mcp.git cd kulturerbe_mcp -
Create and activate virtual environment:
Windows:
python -m venv .venv .venv\Scripts\activateLinux/WSL/macOS:
python3 -m venv .venv source .venv/bin/activate -
Install dependencies:
pip install -r requirements.txt -
Test the server:
Windows:
python server.pyLinux/WSL/macOS:
python3 server.py
Claude Desktop Configuration
Add the server to your Claude Desktop MCP configuration file:
Configuration file locations:
- Windows:
%APPDATA%\Claude\claude_desktop_config.json - macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Option 1: Windows with WSL (Recommended for this project)
{
"mcpServers": {
"kulturerbe-mcp-server": {
"command": "wsl",
"args": ["-e", "/home/username/kulturerbe_mcp/run_server.sh"],
"cwd": "\\\\wsl$\\Ubuntu\\home\\username\\kulturerbe_mcp",
"env": {
"VIRTUAL_ENV": "/home/username/kulturerbe_mcp/.venv",
"PATH": "/home/username/kulturerbe_mcp/.venv/bin:$PATH"
}
}
}
}
Option 2: Windows Native
{
"mcpServers": {
"kulturerbe-mcp-server": {
"command": "python",
"args": ["C:\\path\\to\\kulturerbe_mcp\\server.py"],
"cwd": "C:\\path\\to\\kulturerbe_mcp",
"env": {}
}
}
}
Option 3: Linux/macOS
{
"mcpServers": {
"kulturerbe-mcp-server": {
"command": "python3",
"args": ["/path/to/kulturerbe_mcp/server.py"],
"cwd": "/path/to/kulturerbe_mcp",
"env": {}
}
}
}
Claude Code Configuration
For Claude Code in WSL/Linux environment:
{
"mcpServers": {
"kulturerbe-mcp-server": {
"command": "/home/username/kulturerbe_mcp/run_server.sh",
"args": [],
"cwd": "/home/username/kulturerbe_mcp",
"env": {
"VIRTUAL_ENV": "/home/username/kulturerbe_mcp/.venv",
"PATH": "/home/username/kulturerbe_mcp/.venv/bin:$PATH"
}
}
}
}
📝 Note: Pre-configured options are available in
mcp_config.json- copy the relevant section to your configuration file.
Alternative: Launcher Scripts
Windows:
run_server.bat
Linux/WSL/macOS:
chmod +x run_server.sh
./run_server.sh
Usage Guide
1. Initial Exploration
Start with broad exploration to understand available data:
# Get overview with facets
kulturpool_explore(query="Mozart")
Returns: Facet counts by institution, type, and time period with sample results.
2. Filtered Search
Use facets to narrow down results:
# Targeted search with filters
kulturpool_search_filtered(
query="Vienna",
institutions=["Albertina", "Belvedere"],
object_types=["IMAGE"],
date_from=1800,
date_to=1900,
creators=["Klimt"],
limit=15
)
Advanced Filters:
- Date Range: Interval overlap semantics (object's [dateMin,dateMax] overlaps [date_from,date_to])
- Creators: Partial matching with wildcards
- Subjects: Exact matching for topics
- Media: Filter by material/medium
- Dublin Core Types: Performance-limited object categorization
3. Related Object Discovery
Find related cultural objects using content-based search:
# Find related objects
kulturpool_get_details(object_ids=["obj123", "obj456"])
4. Institution Management
Explore participating institutions:
# Get institution directory
kulturpool_get_institutions(include_locations=True, language="de")
# Get detailed institution info
kulturpool_get_institution_details(institution_id=42, language="de")
5. Asset Optimization
Access optimized images with transformations:
# Get optimized image assets
kulturpool_get_assets(
asset_id="logo_123",
width=400,
height=300,
format="webp",
quality=85,
fit="inside"
)
Selection of supported institutions
Major Austrian cultural institutions participate in the Kulturpool network:
- Albertina - Graphics and modern art
- Belvedere - Austrian art and baroque collections
- Österreichische Nationalbibliothek - National library and archives
- Wiener Stadt- und Landesarchiv - Vienna city archives
- MAK - Applied arts and contemporary art
- Weltmuseum Wien - Ethnographic collections
- Technisches Museum Wien - Technology and industry
- Naturhistorisches Museum Wien - Natural history
Development
Architecture
The server is built as a single-file implementation (server.py, ~1300 lines) with:
- MCP Protocol: Traditional stdio transport
- Async/Await: Full asynchronous operation
- Pydantic Validation: Type-safe parameter handling
- Security Layer: Input sanitization and rate limiting
- Error Handling: Comprehensive exception management
Key Components
├── SecurityValidator # Input sanitization and validation
├── RateLimiter # Request rate limiting (100/hour)
├── KulturpoolClient # HTTP client with retry logic
├── ResponseProcessor # Data processing and facet analysis
└── Tool Handlers # Six specialized tool implementations
Configuration
Environment Variables
No environment variables required - the server connects directly to the public Kulturpool API.
Rate Limiting
- Default: 100 requests per hour per client
- Configurable: Modify
RateLimiter(max_requests=100, time_window=3600) - Scope: Global across all tool calls
Response Limits
- Explore: < 2KB responses with facets
- Search: ≤ 20 results with full metadata
- Details: ≤ 3 object IDs per request
- Overall: < 10KB response size limit
API Reference
Data Sources
This server provides access to:
- Base API:
https://api.kulturpool.at/search/ - Institution API:
https://api.kulturpool.at/institutions/ - Asset API:
https://api.kulturpool.at/assets/
Object Types
- IMAGE: Photographs, paintings, drawings, graphics
- TEXT: Manuscripts, books, documents, letters
- SOUND: Audio recordings, music, oral history
- VIDEO: Film recordings, documentaries
- 3D: Three-dimensional objects, sculptures
Sort Options
titleSort:asc/desc- Alphabetical by titledataProvider:asc/desc- By institutiondateMin:asc/desc- By earliest datedateMax:asc/desc- By latest date
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE.txt file for details.
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- API Documentation: Kulturpool API
Development Credits
This MCP server was developed at the ÖAW-ACDH using Vibe Coding methodologies with assistance from Claude Sonnet 4 via the Claude Code CLI.
⚠️ Beta Disclaimer
This MCP server is a beta version and experimental software.
- This software has undergone limited testing and should be considered experimental
- Use at your own risk in production environments
- The developers assume no liability for any damages, data loss, or other consequences arising from the use of this software
- No warranty is provided, either express or implied, regarding the functionality, reliability, or suitability of this software for any particular purpose
Acknowledgments
- Kulturpool - Austrian Cultural Heritage Platform
- Model Context Protocol - Protocol specification
- Anthropic - Claude Desktop integration
- Austrian Academy of Sciences - Research institution support
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.