Kubernetes MCP Server

Kubernetes MCP Server

Enables interactive Kubernetes cluster monitoring and troubleshooting through natural language queries. Users can diagnose pod issues, check service status, and investigate cluster problems using conversational AI.

Category
Visit Server

README

Kubernetes MCP Server

An interactive Kubernetes monitoring system built with Flask and OpenAI's Model Context Protocol (MCP). This project provides an agentic interface for diagnosing cluster issues using natural language queries.

Features

  • Flask MCP Server: Exposes Kubernetes cluster data via JSON-RPC endpoints
  • Interactive Client: Ask questions like "What is the status of the checkout service?"
  • OpenAI Integration: Uses GPT models to intelligently investigate cluster problems
  • Kubernetes Integration: Real-time pod monitoring, events, and logs
  • Colorized Output: Beautiful terminal interface with ANSI colors

Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Interactive   │───▶│   Flask MCP      │───▶│   Kubernetes    │
│     Client      │    │     Server       │    │    Cluster      │
│   (client.py)   │    │   (server.py)    │    │   (KIND/etc)    │
└─────────────────┘    └──────────────────┘    └─────────────────┘
         │                       │
         ▼                       ▼
┌─────────────────┐    ┌──────────────────┐
│   OpenAI GPT    │    │  Static Fixtures │
│   (optional)    │    │  (metrics, etc)  │
└─────────────────┘    └──────────────────┘

Setup

Prerequisites

  • Python 3.9+
  • Kubernetes cluster (KIND recommended for local development)
  • OpenAI API key (optional, fallback mode available)

Installation

  1. Clone the repository:
git clone https://github.com/YOUR_USERNAME/YOUR_REPO_NAME.git
cd YOUR_REPO_NAME
  1. Install dependencies:
pip install flask kubernetes openai requests
  1. Set up environment variables:
export OPENAI_API_KEY="your-api-key-here"  # Optional
export KUBECONFIG="path/to/your/kubeconfig"  # If not using default

Running the Server

cd mcp
python3 server.py

The server will start on http://localhost:5050

Running the Interactive Client

cd mcp
python3 client.py

Usage

Interactive Mode

Start the client and ask natural language questions:

> what is the status of my checkout service?
> show failing pods in namespace staging  
> summarize errors for service payments in the last 45 minutes

One-shot Mode

python3 client.py --ask "what pods are failing in default namespace?"

Available Tools

  • k8s.listProblemPods - Find problematic pods
  • k8s.getPodDetails - Get detailed pod information
  • deployments.listRecentChanges - Recent deployment history
  • metrics.getErrors - Error rate analysis
  • traces.sampleErrors - Sample failing traces
  • config.getDiff - Configuration changes

Example Output

=== 🧩 FINAL ANSWER ===

📋 Summary:
  The pod 'demo-fail-5df44cbf79-tqg6l' is experiencing CrashLoopBackOff

🔍 Evidence:
  • Pod: demo-fail-5df44cbf79-tqg6l
    Status: Running
    Restarts: 115
    Reason: CrashLoopBackOff

⚠️  Probable Cause:
  Application failing to start successfully due to exit code 1

🛠️  Safe Next Step:
  Investigate application logs and configuration

✅ Confidence: High

Configuration

Environment variables:

  • RPC_URL - MCP server URL (default: http://127.0.0.1:5050/rpc)
  • OPENAI_API_KEY - OpenAI API key for LLM features
  • OPENAI_MODEL - Model to use (default: gpt-4o-mini)
  • SERVICE - Default service name (default: checkout)
  • NAMESPACE - Default K8s namespace (default: default)
  • SINCE_MINS - Time window for queries (default: 120)

Development

Project Structure

mcp-demo/
├── mcp/
│   ├── server.py           # Flask MCP server
│   ├── client.py           # Interactive client
│   ├── tools_catalog.json  # Tool definitions
│   └── fixtures/           # Static test data
├── k8s/
│   └── deployment.yaml     # Sample K8s resources
└── README.md

Adding New Tools

  1. Add tool definition to tools_catalog.json
  2. Implement handler in server.py
  3. Test with client

Demo

https://github.com/user-attachments/assets/e30a7a69-ff7a-46f1-a2ff-e75eff79334b

License

MIT License

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured