KTME - Knowledge Tracking & Management Engine
Tracks and manages code changes from Git repositories, generates documentation automatically, and provides AI agents with intelligent access to service documentation through MCP server integration with feature mapping and search capabilities.
README
KTME - Knowledge Transfer Me
Automated documentation generation from Git changes using AI
KTME is a CLI tool and MCP server that automatically generates and maintains documentation from Git changes. It integrates with GitHub, GitLab, and Confluence, using AI to create meaningful documentation from code commits and pull requests.
Features
- Smart Documentation Generation - AI-powered documentation from Git diffs, commits, and PRs
- Multiple Integrations - GitHub, GitLab, and Confluence support
- Template System - Customizable Markdown templates with variable substitution
- MCP Server - Model Context Protocol server for AI agent integration
- Dual Storage - TOML and SQLite backends for flexibility
- Service Mapping - Organize documentation by service/project
Quick Start
Installation
# Install via npm (recommended - easiest)
npm install -g ktme-cli
# Install from crates.io
cargo install ktme
# Or build from source
cargo build --release
cargo install --path .
Basic Usage
# Generate docs from staged changes
ktme generate --service my-service --staged
# Extract GitHub PR and generate docs
ktme extract --pr 123 --provider github
ktme generate --service my-service --commit HEAD
# Update existing documentation
ktme update --service my-service --staged --section "API Changes"
# Map service to documentation location
ktme mapping add my-service --file docs/api.md
Configuration
Create ~/.config/ktme/config.toml:
[git]
github_token = "ghp_xxxxx"
gitlab_token = "glpat_xxxxx"
[confluence]
base_url = "https://your-company.atlassian.net/wiki"
api_token = "your-api-token"
space_key = "DOCS"
[ai]
provider = "openai"
api_key = "sk-xxxxx"
model = "gpt-4"
Documentation
- Quick Start Guide - Get started in 5 minutes
- Release Workflow - Publishing and version management
- Architecture - System design and components
- Development Guide - Contributing and development setup
Core Capabilities
1. Git Integration
Extract changes from various sources:
- Staged changes (
--staged) - Specific commits (
--commit abc123) - Commit ranges (
--range main..feature) - Pull/Merge requests (
--pr 123)
2. Documentation Generation
Generate documentation with templates:
# Use custom template
ktme generate --service api --template api-docs
# Generate changelog
ktme generate --service api --type changelog
# Output to specific file
ktme generate --service api --output docs/changelog.md
3. Smart Updates
Update existing documentation intelligently:
# Update specific section
ktme update --service api --section "Breaking Changes"
# Smart merge with existing content
ktme update --service api --staged
4. MCP Server
Run as MCP server for AI agents:
# Start server
ktme mcp start
# Available tools:
# - ktme_generate_documentation
# - ktme_update_documentation
# - ktme_list_services
# - ktme_search_features
Development
Quick Commands
# Test changes (fast - only new modules)
make test-changes
# Run all checks (format, lint, tests)
make pre-release
# Development cycle
make dev
Publishing
# Automated release workflow
make release
See docs/RELEASE.md for complete release documentation.
Architecture
┌─────────────┐ ┌──────────────┐ ┌───────────────┐
│ Git CLI │────▶│ Extractors │────▶│ Generators │
│ GitHub API │ │ (Diff/PR/MR) │ │ (Templates) │
│ GitLab API │ └──────────────┘ └───────────────┘
└─────────────┘ │ │
▼ ▼
┌──────────────┐ ┌───────────────┐
│ Storage │ │ Writers │
│ (TOML/SQLite)│ │ (MD/Confluence)│
└──────────────┘ └───────────────┘
Recent Updates (v0.1.0)
New Features
- ✅ Template engine with variable substitution
- ✅ Smart documentation merging by section
- ✅ GitHub PR extraction and integration
- ✅ GitLab MR extraction and integration
- ✅ Confluence writer with Markdown conversion
- ✅ Enhanced Markdown writer with section updates
Implementation Details
- 34 new tests (all passing)
- 10 files modified with new functionality
- Zero compilation errors after strict linting
See CHANGELOG.md for complete version history.
Contributing
We welcome contributions! Please see our Development Guide.
# Setup development environment
git clone https://github.com/FreePeak/ktme.git
cd ktme
make setup
# Run tests
make test-changes
# Submit PR
make pre-release
git push
License
MIT License - see LICENSE for details.
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: docs/
Built with ❤️ using Rust
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.