Knowledge Graph Memory Server
This MCP server provides persistent memory integration for chat applications by utilizing a local knowledge graph to remember user information across interactions.
yodakeisuke
Tools
create_entities
Create multiple new entities in the knowledge graph
create_relations
Create multiple new relations between entities in the knowledge graph. Relations should be in active voice
add_observations
Add new observations to existing entities in the knowledge graph
delete_entities
Delete multiple entities and their associated relations from the knowledge graph
delete_observations
Delete specific observations from entities in the knowledge graph
delete_relations
Delete multiple relations from the knowledge graph
read_graph
Read the entire knowledge graph
search_nodes
Search for nodes in the knowledge graph based on one or more keywords. The search covers entity names, types, subdomains, and observation content. Multiple keywords are treated as OR conditions, where any keyword must match somewhere in the entity's fields.
open_nodes
Open specific nodes in the knowledge graph by their names. Returns the complete node information including subdomain and all metadata.
README
forked https://github.com/modelcontextprotocol/servers/tree/main
Knowledge Graph Memory Server
A basic implementation of persistent memory using a local knowledge graph. This lets Claude remember information about the user across chats.
Core Concepts
Entities
Entities are the primary nodes in the knowledge graph. Each entity has:
- A unique name (identifier)
- An entity type (e.g., "person", "organization", "event")
- A list of observations
Example:
{
"name": "John_Smith",
"entityType": "person",
"observations": ["Speaks fluent Spanish"]
}
Relations
Relations define directed connections between entities. They are always stored in active voice and describe how entities interact or relate to each other.
Example:
{
"from": "John_Smith",
"to": "Anthropic",
"relationType": "works_at"
}
Observations
Observations are discrete pieces of information about an entity. They are:
- Stored as strings
- Attached to specific entities
- Can be added or removed independently
- Should be atomic (one fact per observation)
Example:
{
"entityName": "John_Smith",
"observations": [
"Speaks fluent Spanish",
"Graduated in 2019",
"Prefers morning meetings"
]
}
API
Tools
-
create_entities
- Create multiple new entities in the knowledge graph
- Input:
entities
(array of objects)- Each object contains:
name
(string): Entity identifierentityType
(string): Type classificationobservations
(string[]): Associated observations
- Each object contains:
- Ignores entities with existing names
-
create_relations
- Create multiple new relations between entities
- Input:
relations
(array of objects)- Each object contains:
from
(string): Source entity nameto
(string): Target entity namerelationType
(string): Relationship type in active voice
- Each object contains:
- Skips duplicate relations
-
add_observations
- Add new observations to existing entities
- Input:
observations
(array of objects)- Each object contains:
entityName
(string): Target entitycontents
(string[]): New observations to add
- Each object contains:
- Returns added observations per entity
- Fails if entity doesn't exist
-
delete_entities
- Remove entities and their relations
- Input:
entityNames
(string[]) - Cascading deletion of associated relations
- Silent operation if entity doesn't exist
-
delete_observations
- Remove specific observations from entities
- Input:
deletions
(array of objects)- Each object contains:
entityName
(string): Target entityobservations
(string[]): Observations to remove
- Each object contains:
- Silent operation if observation doesn't exist
-
delete_relations
- Remove specific relations from the graph
- Input:
relations
(array of objects)- Each object contains:
from
(string): Source entity nameto
(string): Target entity namerelationType
(string): Relationship type
- Each object contains:
- Silent operation if relation doesn't exist
-
read_graph
- Read the entire knowledge graph
- No input required
- Returns complete graph structure with all entities and relations
-
search_nodes
- Search for nodes based on one or more keywords
- Input:
query
(string)- Space-separated keywords (e.g., "budget utility")
- Multiple keywords are treated as OR conditions
- Searches across:
- Entity names
- Entity types
- Subdomains
- Observation content
- Matching behavior:
- Case-insensitive
- Partial word matching
- Any keyword can match any field
- Returns entities matching ANY of the keywords
- Returns matching entities and their relations
- Example queries:
- Single keyword: "budget"
- Multiple keywords: "budget utility"
- With special chars: "budget & utility"
-
open_nodes
- Retrieve specific nodes by name
- Input:
names
(string[]) - Returns:
- Requested entities
- Relations between requested entities
- Silently skips non-existent nodes
Usage with Claude Desktop
Setup
Add this to your claude_desktop_config.json:
Docker
{
"mcpServers": {
"memory": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/memory"]
}
}
}
NPX
{
"mcpServers": {
"memory": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-memory"
]
}
}
}
NPX with custom setting
The server can be configured using the following environment variables:
{
"mcpServers": {
"memory": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-memory"
],
"env": {
"MEMORY_FILE_PATH": "/path/to/custom/memory.json"
}
}
}
}
MEMORY_FILE_PATH
: Path to the memory storage JSON file (default:memory.json
in the server directory)
System Prompt
The prompt for utilizing memory depends on the use case. Changing the prompt will help the model determine the frequency and types of memories created.
Here is an example prompt for chat personalization. You could use this prompt in the "Custom Instructions" field of a Claude.ai Project.
Follow these steps for each interaction:
1. User Identification:
- You should assume that you are interacting with default_user
- If you have not identified default_user, proactively try to do so.
2. Memory Retrieval:
- Always begin your chat by saying only "Remembering..." and retrieve all relevant information from your knowledge graph
- Always refer to your knowledge graph as your "memory"
- When searching your memory, you can use multiple keywords to find related information
- Example searches:
* Single concept: "programming"
* Related concepts: "programming python"
* Specific domain with role: "work engineer"
3. Memory Creation:
- While conversing with the user, be attentive to any new information that falls into these categories:
a) Basic Identity (age, gender, location, job title, education level, etc.)
b) Behaviors (interests, habits, etc.)
c) Preferences (communication style, preferred language, etc.)
d) Goals (goals, targets, aspirations, etc.)
e) Relationships (personal and professional relationships up to 3 degrees of separation)
- When storing information, use specific and descriptive keywords that will help in future searches
4. Memory Update:
- If any new information was gathered during the interaction, update your memory as follows:
a) Create entities for recurring organizations, people, and significant events
b) Connect them to the current entities using relations
c) Store facts about them as observations
d) Use clear and searchable terms in entity names and observations to facilitate future retrieval
Building
Docker:
docker build -t mcp/memory -f src/memory/Dockerfile .
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Neon Database
MCP server for interacting with Neon Management API and databases
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
React MCP
react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts
Atlassian Integration
Model Context Protocol (MCP) server for Atlassian Cloud products (Confluence and Jira). This integration is designed specifically for Atlassian Cloud instances and does not support Atlassian Server or Data Center deployments.

Any OpenAI Compatible API Integrations
Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.
MySQL Server
Allows AI assistants to list tables, read data, and execute SQL queries through a controlled interface, making database exploration and analysis safer and more structured.
Browser Use (used by Deploya.dev)
AI-driven browser automation server that implements the Model Context Protocol to enable natural language control of web browsers for tasks like navigation, form filling, and visual interaction.