Kiro CLI MCP Server
Enables IDE agents like Cursor and Windsurf to orchestrate kiro-cli with advanced session management, process pooling for 10x faster responses, and multi-project workflow support through isolated contexts.
README
Kiro CLI MCP Server
A Model Context Protocol (MCP) server that enables IDE agents like Cursor and Windsurf to orchestrate kiro-cli with advanced session management, process pooling, and robust error handling.
Overview
Kiro CLI MCP Server bridges the gap between IDE agents and kiro-cli by providing a standardized MCP interface with enterprise-grade features:
- 10x Performance Improvement: Process pooling reduces response time from ~500ms to ~50ms
- Multi-Session Management: Isolated contexts for different projects/workflows
- Production-Ready Reliability: Comprehensive error handling, timeout management, and process cleanup
- Mock Mode: Development and testing without kiro-cli dependency
Features
Core Capabilities
- Chat Integration: Send messages to kiro-cli and receive AI responses
- Session Management: Create, switch, and manage multiple isolated sessions
- Command Execution: Execute kiro-cli commands (
/help,/mcp, etc.) - Custom Agents: Use and list available custom agents
- History Management: Store and retrieve conversation history per session
- Async Operations: Background task execution with progress polling
Performance & Reliability
- Process Pooling: Reuse warm kiro-cli processes for 10x faster responses
- Process Tree Cleanup: Prevent orphaned processes across platforms
- Automatic Fallback: Mock mode when kiro-cli unavailable
- Timeout Handling: Configurable timeouts with graceful cleanup
- Session Isolation: Per-project working directories and conversation state
Installation
Prerequisites
- Python 3.10+
- kiro-cli installed and available in PATH (for full functionality - uses mock mode if unavailable)
From Source (Current Method)
git clone https://github.com/your-org/kiro-cli-mcp.git
cd kiro-cli-mcp
pip install -e .
Via pip (After PyPI Publication)
# Will be available after publishing to PyPI
pip install kiro-cli-mcp
Via uvx (After PyPI Publication)
# Will be available after publishing to PyPI
uvx install kiro-cli-mcp
Configuration
IDE Integration
Add to your IDE's MCP configuration file:
Cursor/Claude Desktop (~/.config/claude-desktop/mcp.json):
{
"mcpServers": {
"kiro-cli-mcp": {
"command": "uvx",
"args": ["kiro-cli-mcp"],
"env": {
"KIRO_MCP_LOG_LEVEL": "INFO"
}
}
}
}
Windsurf (.windsurf/mcp.json):
{
"mcpServers": {
"kiro-cli-mcp": {
"command": "python",
"args": ["-m", "kiro_cli_mcp"],
"env": {
"KIRO_MCP_CLI_PATH": "/usr/local/bin/kiro-cli",
"KIRO_MCP_POOL_SIZE": "5"
},
"autoApprove": [
"kiro_session_list",
"kiro_agents_list",
"kiro_history"
]
}
}
}
Environment Variables
| Variable | Description | Default |
|---|---|---|
KIRO_MCP_CLI_PATH |
Path to kiro-cli executable | kiro-cli |
KIRO_MCP_COMMAND_TIMEOUT |
Command timeout (seconds) - IDE-optimized | 30 |
KIRO_MCP_MAX_SESSIONS |
Maximum concurrent sessions | 10 |
KIRO_MCP_SESSION_TIMEOUT |
Session idle timeout (seconds) | 300 |
KIRO_MCP_CLEANUP_INTERVAL |
Session cleanup check interval (seconds) | 30 |
KIRO_MCP_LOG_LEVEL |
Logging level | INFO |
KIRO_MCP_DEFAULT_MODEL |
Default AI model for kiro-cli | claude-opus-4.5 |
KIRO_MCP_DEFAULT_AGENT |
Default agent to use | kiro_default |
KIRO_MCP_LOG_RESPONSE |
Log full CLI responses for debugging | true |
KIRO_MCP_POOL_SIZE |
Process pool size | 5 |
KIRO_MCP_POOL_ENABLED |
Enable process pooling | true |
KIRO_MCP_POOL_IDLE_TIME |
Process idle time before recycling (seconds) | 300 |
KIRO_MCP_POOL_MAX_USES |
Max uses per process before recycling | 100 |
KIRO_MCP_MAX_ASYNC_TASKS |
Maximum concurrent async tasks | 100 |
KIRO_MCP_TASK_TTL |
Task result TTL (seconds) | 3600 |
Available MCP Tools
Session Management
kiro_session_create- Create new session with optional agent and working directorykiro_session_list- List all active sessionskiro_session_switch- Switch to specific sessionkiro_session_end- End a sessionkiro_session_clear- Clear session history fileskiro_session_save- Save session to file
Chat & Commands
kiro_chat- Send chat message and get AI responsekiro_command- Execute kiro-cli commands (/help,/mcp, etc.)kiro_agents_list- List available custom agents
History Management
kiro_history- Get conversation history for sessionkiro_history_clear- Clear conversation history
Async Operations
kiro_chat_async- Start background chat taskkiro_task_status- Poll task progress and resultskiro_task_cancel- Cancel running taskkiro_task_list- List active tasks
Monitoring
kiro_pool_stats- Get process pool performance statistics
Usage Examples
Basic Chat
# Create session for project
await mcp_client.call_tool("kiro_session_create", {
"working_directory": "/path/to/project",
"agent": "code-reviewer"
})
# Send message
response = await mcp_client.call_tool("kiro_chat", {
"message": "Analyze this codebase and suggest improvements"
})
Multi-Project Workflow
# Project A
session_a = await mcp_client.call_tool("kiro_session_create", {
"working_directory": "/projects/frontend",
"agent": "react-expert"
})
# Project B
session_b = await mcp_client.call_tool("kiro_session_create", {
"working_directory": "/projects/backend",
"agent": "python-expert"
})
# Switch between projects
await mcp_client.call_tool("kiro_session_switch", {
"session_id": session_a["session_id"]
})
Async Operations
# Start long-running task
task = await mcp_client.call_tool("kiro_chat_async", {
"message": "Generate comprehensive test suite"
})
# Poll for progress
while True:
status = await mcp_client.call_tool("kiro_task_status", {
"task_id": task["task_id"]
})
if status["status"] == "completed":
break
await asyncio.sleep(1)
Architecture
MCP Protocol Integration
- Server: Built on official MCP SDK (
mcp.server.Server) - Transport: JSON-RPC 2.0 over stdio
- Tools: 16 registered tools with schema validation
- Resources: Minimal resource handling for extensibility
Process Management
IDE Agent → MCP Server → Process Pool → kiro-cli instances
↓
Session Manager → Isolated contexts per project
Key Components
- SessionManager: Multi-session isolation and lifecycle management
- ProcessPool: Warm process reuse for 10x performance improvement
- CommandExecutor: Robust command execution with timeout handling
- StreamingTaskManager: Async task execution with progress polling
Performance Optimizations
- Process Pooling: Reuse warm kiro-cli processes
- Session Affinity: Route requests to appropriate process
- Intelligent Cleanup: Remove idle/unhealthy processes
- Mock Mode: Fast responses during development
Development
Setup
git clone https://github.com/your-org/kiro-cli-mcp.git
cd kiro-cli-mcp
pip install -e ".[dev]"
Testing
# Run all tests
pytest
# With coverage
pytest --cov=kiro_cli_mcp --cov-report=html
# Property-based tests
pytest tests/test_config.py -v
Code Quality
# Format code
ruff format .
# Lint
ruff check .
# Type checking
mypy src/
Running Server
# Development mode with debug logging
python -m kiro_cli_mcp --log-level DEBUG
# With custom config
python -m kiro_cli_mcp --config config.json
Contributing
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Commit changes (
git commit -m 'Add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open Pull Request
Troubleshooting
kiro-cli Not Found
Server automatically enables mock mode if kiro-cli is unavailable:
# Check kiro-cli availability
which kiro-cli
# Set custom path
export KIRO_MCP_CLI_PATH=/custom/path/to/kiro-cli
# Verify server mode
python -m kiro_cli_mcp --log-level DEBUG
# Look for: "✅ kiro-cli is available" or "❌ kiro-cli not available: enabling mock mode"
Performance Issues
# Verify process pooling is enabled
python -m kiro_cli_mcp --log-level DEBUG
# Look for: "🔄 Using pooled process execution"
# Check pool statistics
# Use kiro_pool_stats tool to monitor performance
Session Management
# Increase session limits
export KIRO_MCP_MAX_SESSIONS=20
export KIRO_MCP_SESSION_TIMEOUT=7200 # 2 hours
# Clear stuck sessions
# Sessions auto-cleanup after timeout
Process Cleanup
If you encounter orphaned processes:
# Unix/Linux/macOS
pkill -f kiro-cli
# Windows
taskkill /F /IM kiro-cli.exe
# Check process groups (Unix)
ps -eo pid,pgid,cmd | grep kiro
License
MIT License - see LICENSE file for details.
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Wiki
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.