KCC MCP Server

KCC MCP Server

Enables AI assistants to contribute to Google Cloud Platform's k8s-config-connector by adding fields to resources, migrating from Terraform to direct controller architecture, and creating properly attributed commits.

Category
Visit Server

README

KCC MCP Server

Model Context Protocol (MCP) server for contributing to Google Cloud Platform's k8s-config-connector.

This MCP server provides AI assistants with tools to:

  • Add fields to existing direct controller resources
  • Migrate resources from Terraform-based to direct controller architecture
  • Create commits with enforced attribution rules (NO AI attribution)

Features

12 MCP Tools for k8s-config-connector contributions ✅ Universal AI Attribution Blocking - enforces human-only commit authorship ✅ Resource Detection - automatically determines controller type ✅ Migration Planning - 7-phase workflow for Terraform → Direct migration ✅ Code Scaffolding - generates boilerplate for types, controller, MockGCP ✅ Proto Annotations - maintains KRM ↔ GCP proto mappings

Quick Start

Installation with Gemini CLI (Recommended)

# Install from GitHub
npx @google/gemini-cli extensions install https://github.com/fkc1e100/kcc-mcp-server.git

# Run setup
cd ~/.gemini/extensions/kcc-contributor
./setup-config.sh

# Start using it
npx @google/gemini-cli chat

Manual Installation

# Clone or copy this repository
cd kcc-mcp-server

# Install dependencies
npm install

# Build
npm run build

Configuration

Option 1: Interactive Setup (Easiest)

Run the setup script after installation:

./setup-config.sh

This creates ~/.config/kcc-mcp-server/config.json with your settings.

Option 2: Manual Config File

Create ~/.config/kcc-mcp-server/config.json:

{
  "git": {
    "author_name": "Your Name",
    "author_email": "you@example.com"
  },
  "kcc_repo_path": "/path/to/k8s-config-connector"
}

Option 3: Environment Variables

export KCC_REPO_PATH="/path/to/k8s-config-connector"
export KCC_AUTHOR_NAME="Your Name"
export KCC_AUTHOR_EMAIL="you@example.com"

Usage with Gemini CLI

# Start chat session
npx @google/gemini-cli chat
# or
gemini --yolo

# Check MCP server status
/mcp list

# Should show:
# 🟢 kccServer (from kcc-contributor) - Ready (12 tools)

Example prompts:

Check if ComputeURLMap needs migration
Find the EdgeCacheService resource files
Add a new field called routeMethods to EdgeCacheService

See GEMINI_CLI_USAGE.md for more examples.

Verifying Installation

After installation, verify the MCP server is connected:

npx @google/gemini-cli chat

Then in the chat:

/mcp list

You should see:

🟢 kccServer (from kcc-contributor) - Ready (12 tools)
  Tools:
  - kcc_add_field
  - kcc_detect_controller_type
  - kcc_find_resource
  - kcc_generate_mapper
  - kcc_git_commit
  - kcc_git_status
  - kcc_migration_status
  - kcc_plan_migration
  - kcc_scaffold_controller
  - kcc_scaffold_identity
  - kcc_scaffold_mockgcp
  - kcc_scaffold_types

If you see 🔴 kccServer - Disconnected, see Troubleshooting below.

Usage with Claude Desktop

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):

{
  "mcpServers": {
    "kcc-contributor": {
      "command": "node",
      "args": ["/path/to/kcc-mcp-server/dist/index.js"],
      "env": {
        "KCC_REPO_PATH": "/path/to/k8s-config-connector"
      }
    }
  }
}

Available Tools

Resource Detection (3 tools)

kcc_find_resource

Locate files for a KCC resource (types, controller, mapper, test fixtures).

Parameters:

  • resource (string): Resource name (e.g., "EdgeCacheService")

kcc_detect_controller_type

Detect if a resource uses direct controller or Terraform-based controller.

Parameters:

  • resource (string): Resource name

Returns:

{
  "type": "terraform",
  "migration_needed": true,
  "service": "compute",
  "version": "v1beta1"
}

kcc_migration_status

Get migration status for a resource (shows which phases are complete).

Parameters:

  • resource (string): Resource name

Returns:

{
  "resource": "ComputeURLMap",
  "overall_progress": "2/7 phases",
  "current_phase": { "number": 2, "name": "API Types", "status": "not_started" },
  "next_action": "Use kcc_scaffold_types to create API types file",
  "can_add_fields": false
}

Migration Tools (5 tools)

kcc_plan_migration

Create a detailed 7-phase migration plan for migrating a Terraform-based resource to direct controller.

Parameters:

  • resource (string): Resource name

kcc_scaffold_types

Generate API types file (Phase 2 of migration).

Parameters:

  • resource, service, version, proto_package, proto_message, description (optional)

kcc_scaffold_identity

Generate identity handler file (Phase 3 of migration).

Parameters:

  • resource, service, version, resource_name_format

kcc_scaffold_controller

Generate controller file (Phase 5 of migration).

Parameters:

  • resource, service, version, proto_package, proto_message

kcc_scaffold_mockgcp

Generate MockGCP server file (Phase 6 of migration).

Parameters:

  • resource, service, proto_package, proto_message, resource_name_format

Field Addition (2 tools)

kcc_add_field

Add a field to an existing direct controller with proper proto annotations.

Parameters:

{
  "resource": "EdgeCacheService",
  "field_name": "RouteMethods",
  "field_type": "array",
  "proto_path": "google.cloud.networkservices.v1.EdgeCacheService.routing.route_rule.route_methods",
  "parent_type": "ComputeURLMapSpec",
  "description": "HTTP methods to match for routing"
}

kcc_generate_mapper

Regenerate KRM ↔ Proto mapper after adding fields.

Parameters:

  • resource (string): Resource name

Git Operations (2 tools)

kcc_git_commit

Create git commit with enforced rules: blocks AI attribution, uses your git identity, validates message format.

Parameters:

{
  "message": "feat(networkservices): Add routeMethods to EdgeCacheService\n\nAdds support for HTTP method-based routing.",
  "files": ["apis/networkservices/v1alpha1/edgecacheservice_types.go"]
}

Validation:

  • ✅ Blocks AI attribution (Claude, Anthropic, Gemini, OpenAI, etc.)
  • ✅ Validates conventional commit format (feat:, fix:, chore:, etc.)
  • ✅ Uses your configured git identity

kcc_git_status

Get current git status.

No parameters required.

Example Workflows

Example 1: Add Field to Existing Direct Controller

Scenario: Add routeMethods field to EdgeCacheService

// 1. Find the resource
kcc_find_resource({ resource: "EdgeCacheService" })

// 2. Add the field
kcc_add_field({
  resource: "EdgeCacheService",
  field_name: "RouteMethods",
  field_type: "array",
  proto_path: "google.cloud.networkservices.v1.EdgeCacheService.routing.route_rule.route_methods",
  description: "HTTP methods to match for routing"
})

// 3. Regenerate mapper
kcc_generate_mapper({ resource: "EdgeCacheService" })

// 4. Commit changes
kcc_git_commit({
  message: "feat(networkservices): Add routeMethods to EdgeCacheService\n\nAdds support for HTTP method-based routing."
})

Example 2: Migrate Terraform Resource to Direct Controller

Scenario: Migrate ComputeURLMap from Terraform to direct controller

// 1. Detect controller type
kcc_detect_controller_type({ resource: "ComputeURLMap" })
// Returns: { type: "terraform", migration_needed: true }

// 2. Check migration status
kcc_migration_status({ resource: "ComputeURLMap" })
// Shows: 2/7 phases complete, next: scaffold types

// 3. Get detailed migration plan
kcc_plan_migration({ resource: "ComputeURLMap" })
// Returns: 7 phases with specific tasks

// 4. Phase 2: Scaffold API types
kcc_scaffold_types({
  resource: "ComputeURLMap",
  service: "compute",
  version: "v1beta1",
  proto_package: "google.cloud.compute.v1",
  proto_message: "UrlMap"
})

// 5. Phase 3: Scaffold identity handler
kcc_scaffold_identity({
  resource: "ComputeURLMap",
  service: "compute",
  version: "v1beta1",
  resource_name_format: "projects/{project}/global/urlMaps/{urlMap}"
})

// 6. Phase 4: Generate mapper
kcc_generate_mapper({ resource: "ComputeURLMap" })

// 7. Phase 5: Scaffold controller
kcc_scaffold_controller({
  resource: "ComputeURLMap",
  service: "compute",
  version: "v1beta1",
  proto_package: "google.cloud.compute.v1",
  proto_message: "UrlMap"
})

// 8. Phase 6: Scaffold MockGCP
kcc_scaffold_mockgcp({
  resource: "ComputeURLMap",
  service: "compute",
  proto_package: "google.cloud.compute.v1",
  proto_message: "UrlMap",
  resource_name_format: "projects/{project}/global/urlMaps/{urlMap}"
})

// 9. Manually create test fixtures (Phase 7)
// ... create YAML files in pkg/test/resourcefixture/testdata/

// 10. Commit the migration
kcc_git_commit({
  message: "feat(compute)!: Migrate ComputeURLMap to direct controller\n\nMigrates from Terraform-based to direct controller architecture.\n\nBREAKING CHANGE: Resource moves from terraform to direct controller."
})

Testing

# Test field addition tools
npm test

# Test migration tools
node test/test-migration-tools.js

Test Results:

✅ Test 1: Detect Controller Type - PASS
✅ Test 2: Get Migration Status - PASS
✅ Test 3: Plan Migration - PASS
✅ Test 4: Verify EdgeCacheService (Direct Controller) - PASS

Troubleshooting

kccServer shows as Disconnected

If /mcp list shows 🔴 kccServer - Disconnected:

1. Check config file exists:

cat ~/.config/kcc-mcp-server/config.json

If missing, run the setup script:

cd ~/.gemini/extensions/kcc-contributor
./setup-config.sh

2. Verify SDK version (must be 1.11.0+):

cat ~/.gemini/extensions/kcc-contributor/package.json | grep "@modelcontextprotocol/sdk"

Should show: "@modelcontextprotocol/sdk": "^1.11.0"

If it shows 0.5.0 or older, update the extension:

npx @google/gemini-cli extensions uninstall kcc-contributor
npx @google/gemini-cli extensions install https://github.com/fkc1e100/kcc-mcp-server.git

3. Test server manually:

cd ~/.gemini/extensions/kcc-contributor
node dist/index.js

Should show:

✅ KCC MCP Server initialized
📁 Repository: /path/to/k8s-config-connector
👤 Author: Your Name <you@example.com>
🚀 KCC MCP Server running

4. Check repository path is valid:

Make sure the kcc_repo_path in your config points to a valid k8s-config-connector directory.

Updating the Extension

To get the latest version:

Option 1: Reinstall

npx @google/gemini-cli extensions uninstall kcc-contributor
npx @google/gemini-cli extensions install https://github.com/fkc1e100/kcc-mcp-server.git

Option 2: Manual update

cd ~/.gemini/extensions/kcc-contributor
git pull origin main
npm install

Then restart Gemini CLI.

Config File Not Found

If you see errors about config not found, create the config file:

mkdir -p ~/.config/kcc-mcp-server
cat > ~/.config/kcc-mcp-server/config.json << 'EOF'
{
  "git": {
    "author_name": "Your Name",
    "author_email": "you@example.com"
  },
  "kcc_repo_path": "/path/to/k8s-config-connector"
}
EOF

Replace the paths and details with your actual information.

Migration Phases

The migration process consists of 7 phases:

  1. Proto Definitions - Verify proto files exist
  2. API Types (KRM) - Define Kubernetes resource types
  3. Identity Handler - Implement resource name parsing
  4. Mapper Generation - Generate KRM ↔ Proto conversions
  5. Controller Implementation - Implement CRUD operations
  6. MockGCP Implementation - Create mock GCP server for testing
  7. Test Fixtures - Create YAML test fixtures

Each phase builds on the previous phase. Use kcc_migration_status to track progress.

Critical Rules

⚠️ AI Attribution is BLOCKED

This server ENFORCES that only human contributors are credited in git commits. It will REJECT any commit message containing:

  • AI assistant names (Claude, Gemini, GPT, etc.)
  • AI company names (Anthropic, OpenAI, etc.)
  • Co-Authored-By lines with AI emails
  • Phrases like "Generated with", "AI-generated", etc.

This is a NON-NEGOTIABLE requirement for k8s-config-connector contributions.

Conventional Commits

Commit messages must follow the conventional commits format:

<type>(<scope>): <subject>

<body>

Types: feat, fix, docs, chore, refactor, test

Example:

feat(compute): Add defaultCustomErrorResponsePolicy to ComputeURLMap

Adds support for configuring custom error response policies
at the URL map level.

Architecture

kcc-mcp-server/
├── src/
│   ├── index.ts              # MCP server implementation
│   ├── config.ts             # Configuration management
│   ├── git-validator.ts      # Git attribution enforcement
│   └── tools/
│       ├── find-resource.ts          # Resource file location
│       ├── detect-controller-type.ts # Controller type detection
│       ├── migration-status.ts       # Migration progress tracking
│       ├── plan-migration.ts         # Migration plan generation
│       ├── scaffold-types.ts         # API types scaffolding
│       ├── scaffold-identity.ts      # Identity handler scaffolding
│       ├── scaffold-controller.ts    # Controller scaffolding
│       ├── scaffold-mockgcp.ts       # MockGCP scaffolding
│       ├── add-field.ts              # Field addition
│       └── generate-mapper.ts        # Mapper generation
├── test/
│   ├── test-edgecacheservice.js      # Field addition tests
│   └── test-migration-tools.js       # Migration tools tests
└── README.md

Configuration Priority

Configuration is loaded in this order (first found wins):

  1. Environment variables (highest priority)
    • KCC_REPO_PATH, KCC_AUTHOR_NAME, KCC_AUTHOR_EMAIL
  2. Config file (~/.config/kcc-mcp-server/config.json)
  3. Git config (lowest priority, used as fallback for author name/email only)

Resources

License

Apache License 2.0 (following k8s-config-connector)

Authors

  • Frank Currie (fcurrie@google.com)

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured