Kappybara MCP Server
Enables LLMs to run rule-based molecular interaction simulations using the Kappa language through the Kappybara package. Returns simulation results as CSV data for analysis of biochemical systems and molecular binding dynamics.
README
Kappybara MCP Server
An MCP (Model Context Protocol) server for running Kappa simulations using the Kappybara package. This allows LLMs to run rule-based simulations of molecular interaction systems directly.
Python packages used:
Features
- Run Kappa Simulations: Execute Kappa models with customizable parameters using kappybara
- CSV Output: Get simulation results as CSV data for easy analysis
- Example Models: Built-in example models (reversible binding, linear polymerization)
- Pure Python: Uses the kappybara Python library for all simulations
Installation
- Clone or download this repository
- Install dependencies:
pip install -r requirements.txt
Usage
Running the MCP Server
fastmcp run main.py
Using with Claude Desktop
fastmcp install claude-desktop main.py
Available Tools
run_kappa_simulation
Run a Kappa simulation and return results with stdout, stderr, and CSV output.
Parameters:
kappa_code(string, required): The Kappa model code to simulatetime_limit(float, default: 100.0): Maximum simulation timepoints(int, default: 200): Number of data points to collectseed(int, optional): Random seed for reproducibility
Returns: JSON string with three fields:
stdout: Standard output from the simulationstderr: Standard error output (warnings, errors)output: CSV data with simulation results
Example:
kappa_code = """
%init: 100 A(x[.])
%init: 100 B(x[.])
%obs: 'AB' |A(x[1]), B(x[1])|
A(x[.]), B(x[.]) <-> A(x[1]), B(x[1]) @ 1, 1
"""
result = run_kappa_simulation(kappa_code, time_limit=50, points=100)
# Result is a JSON string like:
# {
# "stdout": "",
# "stderr": "",
# "output": "time,AB\n0.0,0\n0.01,1\n..."
# }
Available Resources
kappa://examples/simple
A simple reversible binding model (kappybara syntax).
kappa://examples/polymerization
A linear polymerization model (kappybara syntax).
Kappa Language Basics (Kappybara Syntax)
Kappybara uses a specific syntax for Kappa models. Here's a quick reference:
Basic Syntax
%init: 100 AgentName(site1[.], site2[state]) # Initialize agents
%obs: 'Observable' |pattern| # Define observable
pattern -> pattern @ rate # Define rule (irreversible)
pattern <-> pattern @ rate1, rate2 # Define rule (reversible)
Binding Sites
[.]- unbound site[1],[2], etc. - bound sites (bond labels)[_]- wildcard for any binding state
Example: Reversible Binding
%init: 100 A(x[.])
%init: 100 B(x[.])
%obs: 'A_free' |A(x[.])|
%obs: 'B_free' |B(x[.])|
%obs: 'AB_complex' |A(x[1]), B(x[1])|
// Reversible binding with forward rate 0.001 and reverse rate 0.1
A(x[.]), B(x[.]) <-> A(x[1]), B(x[1]) @ 0.001, 0.1
Development
Project Structure
kappybara-mcp/
├── main.py # MCP server implementation
├── requirements.txt # Python dependencies
├── README.md # This file
└── test_example.py # Example test/demo script
Testing
Run the test example:
python test_example.py
How It Works
- The MCP server exposes Kappa simulation capabilities through the Model Context Protocol
- LLMs can call the
run_kappa_simulationtool with Kappa code (using kappybara syntax) and parameters - The server uses the Kappybara Python library to parse the model and run the simulation
- Results are returned as JSON with stdout, stderr, and CSV output that can be analyzed or visualized
References
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.